
Challenges with Hardware-Software Co-design for
Sparse Machine Learning on Streaming Dataflow

Rubens Lacouture
Stanford University, USA

Olivia Hsu
Stanford University, USA

Kunle Olukotun
Stanford University, USA

Fredrik Kjolstad
Stanford University, USA

Abstract
This paper details the problem landscape that arises from
using a general tensor algebra accelerator framework to com-
pute real-world end-to-end machine learning applications.
We identify three key challenges for correctness and per-
formance, which include support for tensor reshaping and
nonlinear operations, dataflow optimization (kernel fusion,
optimal dataflow order), and leveraging sparsity structure.
This paper motivates the need to address these problems in
the domain-specific language, compiler framework, and ar-
chitectural design for sparse machine learning. We extended
a general tensor algebra compiler and architectural model,
the Sparse Abstract Machine, to real-world sparse machine
learning models in order to identify the key challenges above.

Introduction
Prior work on machine learning (ML) accelerator design has
mainly revolved around designing highly optimized hand-
written kernels that are abundant in ML models. Oftentimes,
architects build fixed-function ASICs for accelerating bottle-
neck ML operations [18, 19]. This state-of-the-art execution
approach has beenmost successful for denseML applications,
namely, to reduce models to a sequence of data transforma-
tions that feed to a dense matrix multiplication accelera-
tor [15, 23]. However, this approach will work poorly for
sparse models. Factorizing the computation to fixed kernels
is computationally expensive because it reorganizes sparse
data structures and prevents kernel fusion, which can lead
to worse asymptotic complexity (arbitrary slowdowns) [10].

More general systems, on the other hand, have the ability
to generate fused kernels but are often limited to a smaller
domain of computation. Specifically, sparse tensor algebra is
the backbone of sparse ML but cannot fully express most ML
models. Themore general problem to solve is how to leverage
sparse tensor algebra systems to compute end-to-end real-
world applications. There have been many general software
and hardware systems—like compilers and reconfigurable
dataflow accelerators (like CGRAs)—for tensor algebra [3, 6,
16, 17, 21, 24], and we would like to investigate how to apply
them to modern ML applications.

Three challenges arisewhenwe attempt to integrate sparse
tensor algebra accelerators into sparse ML: designing effi-
cient hardware features for non-tensor algebra operations,

dataflow optimization (automatic fusion and dataflow or-
der selection), and structured sparsity. An entire machine
learning model cannot be developed without these additional
features, which lie beyond linear and multi-linear operations.
Even though it is vital to perform kernel fusion across

several subgraphs of the application, it comes at the cost of
programmability and debuggability. A host of other unsolved
problems also arise from fusion. For example, choosing the
best schedule (tiling and iteration order) for the fully fused
application is difficult since one iteration order may be better
for some sub-computations but worse for others, especially
since sparse applications are data-dependent. Additionally,
determining when fusion must be broken in order to main-
tain correctness across such a large computation is tedious.

We identified the above missing feature and performance
challengeswhen adding sparsemachine learning applications—
especially transformers, and graph neural networks (GNN)—
to a general sparse tensor algebra hardware framework from
prior work, the Sparse Abstract Machine (SAM) [17]. The
Sparse Abstract Machine is a spatial streaming dataflow ma-
chine with various types of primitives that can compose to
express any tensor algebra expression. Moreover, it can ex-
press many algorithms (schedules) for each expression and
has a compiler from a high-level API. Our goal is to co-design
the SAM hardware and software such that machine learning
experts and hardware architects alike can quickly iterate over
novel ideas for new state-of-the-art sparse ML accelerators,
giving them the flexibility to explore hardware accelerator
design for new sparse models with a robust framework.

Challenge 1: New Hardware Features
Although SAM can compute any tensor algebra expression,
modern ML models also need operations that transform and
filter tensors and perform non-linear computations. For ex-
ample, in the masked multi-head attention module in the
decoder blocks of a transformer, a triangular lower mask is
used to prevent the decoder from looking ahead at ground
truth during training. Table 1 shows a list of operations used
by various modern ML algorithms. Therefore, hardware de-
signs also need to handle these operations efficiently, which
mainly consist of fine-grained memory management such
as data movement, data generation, and tiling operations.
The data movement, in particular, includes tensor reshap-
ing, concatenation, splitting, and transpositions, is crucial

https://orcid.org/0009-0008-2268-0074
https://orcid.org/0000-0002-4195-8106
https://orcid.org/0000-0002-8779-0636
https://orcid.org/0000-0002-2267-903X


Rubens Lacouture, Olivia Hsu, Kunle Olukotun, and Fredrik Kjolstad

Name Nonlinear Mask Generation Reshaping

Transformer [26] relu, softmax, sin, cos tri-lower, dropout split, concat
BEIT [2] relu, softmax block random split, concat
BERT [11] gelu, relu, softmax random split, concat
FlashAttention [9] max, exp diag, block random
Sparse Transformer [5] relu, softmax random split, concat

GCN [20] relu, max, softmax diag
GraphSage [14] relu, max, mean diag concat
GAT [27] leaky relu, softmax diag

Table 1. Sparse machine learning algorithms along with
operations that are beyond tensor algebra and SAM.

to representing any sparse ML models. Another challenge is
making general enough blocks so that they can be reused for
more than one specific operation. We have identified three
new SAM primitives for sparse ML, a filter block, a tiling
block and a unary ALU block. The filter block is primarily
used to mask tensors, this can include structured masking
such as lower triangular and diagonal, or random masking
such as dropout (see Figure 1). The tiling block can be used
to perform tensor reshaping operations such as split and
concat. For non-linear operations, the unary ALU introduces
element-wise sparse array algebra operations such as maxi-
mum which can be used in computing the ReLU.

Challenge 2: Dataflow Optimization
Kernel fusion is necessary to maximize performance [1, 17,
28]. For end-to-end ML applications, the number of kernels
can grow quite large, making it infeasible to fuse operations
by hand. For example, the original transformer model [26]
calls several hundred kernels (15 unique kernels) that operate
on one or two input operands. Fully fusing across such a large
number of kernels is practically infeasible and inefficient,
making it necessary to have a hardware language that can
express an automatic system that can optimize fusion. This
framework would also need to determine cases where fusion
is not feasible such as cases where two kernels are not in
concordant traversal or cases where an addition is broadcast
into a product in the wrong iteration order. Current deep
learning compilers such as TVM [4] and XLA [25] only target
dense fusion andmostly target operator fusion. Sparse kernel
fusion is necessary to represent cross-layer fusion.

Dataflow order selection is another key part of the opti-
mization space when mapping ML applications to dataflow.
First, the same dataflow order has to be used across each fully
fused expression, which increases the search space for larger
expressions. This constraint may also significantly worsen
performance since a sub-optimal ordering may compose
slow sub-computations to further bottleneck performance.
Second, current compilers require concordant traversal of
all input tensors for a given iteration ordering; otherwise,
fusion is not possible. This is one of the main challenges
that makes it non-trivial to arbitrarily fuse multiple kernels
together. In the case where two subsequent kernels do not
follow the same iteration order, a transpose or reordering of

Filter 
f(i,j) = i > j

Triangular lower

icrd

jref

jcrd

icrd

jref

jcrd

Unary ALU 
f(x)=exp(x)

Exp

valval3,2,1 exp(3),exp(2),exp(1)

di
m

en
si

on
 i

dimension j

di
m

en
si

on
 i

dimension j

Figure 1. Top: The filter primitive, where the boolean func-
tion 𝑓 defines whether to remove the inner reference token
jref, bottom: the unary ALU primitive, where the function 𝑓

defines the elementwise operation.

modes (tensor reshape) has to be imposed. Ideally, we would
need a way to automatically search for and choose the opti-
mal dataflow ordering for all intermediate tensors over an
entire computation pipeline to maximize fusion benefits. To
do so, a large search space of possible combinations of orders
needs to be explored and the hardware language has to be
able to express this optimization space.

Challenge 3: Structured Sparsity
Prior work on sparse machine learning hardware acceler-
ators has primarily focused on accelerating unstructured
sparse computation. Due to the need for efficient computa-
tion and reuse, modern ML models mix irregular sparsity
with structured sparsity where some parts of the model have
a predefined sparsity pattern, such as convolutional filters
or attention masks. Recent work has shown that structured
sparsity is a promising approach to accelerating machine
learning models [7, 8]. For example, Megablocks [13] reduces
the computations of Mixture-of-Experts (MOE) models into
block sparse computation. Both models are able to achieve
substantial speedups. Although there are a few hardware ac-
celerators that support some structured sparsity [12, 22, 24],
they are constrained to sparsity patterns that users have
to adhere to and cannot be generalized for the larger land-
scape of sparsity, whether that is unstructured or structured.
There is a need for a hardware accelerator coupled with a
language that can handle the full range of sparsity patterns
encountered in modern machine-learning models.

Conclusion
We identified three key challenges and highlight the need
for addressing these challenges through domain-specific lan-
guages, compiler frameworks, and architectural designs for
sparse machine learning hardware accelerators. We believe
that hardware-software co-design is about designing the
programming languages that the hardware executes. With
appropriate and composable operations that are rich enough
to represent large applications, we believe one can build effi-
cient domain-specific hardware that can compute whole ap-
plications. We hope this paper will spark discussions around
coming up with solutions to tackle these key challenges.



Challenges with Hardware-Software Co-design for Sparse Machine Learning on Streaming Dataflow

References
[1] Willow Ahrens, Daniel Donenfeld, Fredrik Kjolstad, and Saman Ama-

rasinghe. 2023. Looplets: A Language for Structured Coiteration. In
Proceedings of the 21st ACM/IEEE International Symposium on Code
Generation and Optimization. 41–54.

[2] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. 2021. Beit: Bert
pre-training of image transformers. arXiv preprint arXiv:2106.08254
(2021).

[3] Aart Bik, Penporn Koanantakool, Tatiana Shpeisman, Nicolas Vasi-
lache, Bixia Zheng, and Fredrik Kjolstad. 2022. Compiler support for
sparse tensor computations inMLIR. ACMTransactions on Architecture
and Code Optimization (TACO) 19, 4 (2022), 1–25.

[4] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Meghan Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis
Ceze, et al. 2018. TVM: An automated end-to-end optimizing compiler
for deep learning. arXiv preprint arXiv:1802.04799 (2018).

[5] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever.
2019. Generating Long Sequences with Sparse Transformers.
arXiv:1904.10509 [cs.LG]

[6] Vidushi Dadu, Jian Weng, Sihao Liu, and Tony Nowatzki. 2019. To-
wards General Purpose Acceleration by Exploiting Common Data-
Dependence Forms. In Proceedings of the 52nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (Columbus, OH, USA)
(MICRO ’52). Association for Computing Machinery, New York, NY,
USA, 924–939. https://doi.org/10.1145/3352460.3358276

[7] Tri Dao, Beidi Chen, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri
Rudra, and Christopher Re. 2021. Pixelated butterfly: Simple and
efficient sparse training for neural network models. arXiv preprint
arXiv:2112.00029 (2021).

[8] Tri Dao, Beidi Chen, Nimit S Sohoni, Arjun Desai, Michael Poli, Jessica
Grogan, Alexander Liu, Aniruddh Rao, Atri Rudra, and Christopher
Ré. 2022. Monarch: Expressive structured matrices for efficient and
accurate training. In International Conference on Machine Learning.
PMLR, 4690–4721.

[9] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré.
2022. Flashattention: Fast and memory-efficient exact attention with
io-awareness. Advances in Neural Information Processing Systems 35
(2022), 16344–16359.

[10] Shail Dave, Riyadh Baghdadi, Tony Nowatzki, Sasikanth Avancha,
Aviral Shrivastava, and Baoxin Li. 2021. Hardware Acceleration of
Sparse and Irregular Tensor Computations of ML Models: A Survey
and Insights. Proc. IEEE 109, 10 (oct 2021), 1706–1752. https://doi.org/
10.1109/jproc.2021.3098483

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2018. Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805 (2018).

[12] Chao Fang, Shouliang Guo, Wei Wu, Jun Lin, Zhongfeng Wang,
Ming Kai Hsu, and Lingzhi Liu. 2022. An Efficient Hardware Ac-
celerator for Sparse Transformer Neural Networks. In 2022 IEEE In-
ternational Symposium on Circuits and Systems (ISCAS). 2670–2674.
https://doi.org/10.1109/ISCAS48785.2022.9937659

[13] Trevor Gale, Deepak Narayanan, Cliff Young, and Matei Zaharia. 2022.
MegaBlocks: Efficient Sparse Training with Mixture-of-Experts. arXiv
preprint arXiv:2211.15841 (2022).

[14] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive
Representation Learning on Large Graphs. In Proceedings of the 31st
International Conference on Neural Information Processing Systems
(Long Beach, California, USA) (NIPS’17). Curran Associates Inc., Red
Hook, NY, USA, 1025–1035.

[15] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku
Diril, Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia,
Aditya Kalro, James Law, Kevin Lee, Jason Lu, Pieter Noordhuis, Misha
Smelyanskiy, Liang Xiong, and Xiaodong Wang. 2018. Applied Ma-
chine Learning at Facebook: A Datacenter Infrastructure Perspective.

In 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA). 620–629. https://doi.org/10.1109/HPCA.2018.
00059

[16] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal
Crago, Aamer Jaleel, Edgar Solomonik, Joel Emer, and Christopher W
Fletcher. 2019. Extensor: An accelerator for sparse tensor algebra. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture. 319–333.

[17] Olivia Hsu, Maxwell Strange, Jaeyeon Won, Ritvik Sharma, Kunle
Olukotun, Joel Emer, Mark Horowitz, and Fredrik Kjolstad. 2022. The
Sparse Abstract Machine. https://doi.org/10.48550/ARXIV.2208.14610

[18] Norman P. Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagara-
jan, Lifeng Nai, Nishant Patil, Suvinay Subramanian, Andy Swing,
Brian Towles, Cliff Young, Xiang Zhou, Zongwei Zhou, and David
Patterson. 2023. TPU v4: An Optically Reconfigurable Supercom-
puter for Machine Learning with Hardware Support for Embeddings.
arXiv:2304.01433 [cs.AR]

[19] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. 2017. In-datacenter performance analysis of a
tensor processing unit. In Proceedings of the 44th annual international
symposium on computer architecture. 1–12.

[20] ThomasN. Kipf andMaxWelling. 2017. Semi-Supervised Classification
with Graph Convolutional Networks. In International Conference on
Learning Representations. https://openreview.net/forum?id=SJU4ayYgl

[21] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and
Saman Amarasinghe. 2017. The tensor algebra compiler. Proceedings
of the ACM on Programming Languages 1, OOPSLA (2017), 1–29.

[22] Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan
Stosic, Ganesh Venkatesh, Chong Yu, and Paulius Micikevicius. 2021.
Accelerating Sparse Deep Neural Networks. arXiv:2104.08378 [cs.LG]

[23] Eriko Nurvitadhi, Jaewoong Sim, David Sheffield, Asit Mishra, Srivat-
san Krishnan, and Debbie Marr. 2016. Accelerating recurrent neural
networks in analytics servers: Comparison of FPGA, CPU, GPU, and
ASIC. In 2016 26th International Conference on Field Programmable
Logic and Applications (FPL). 1–4. https://doi.org/10.1109/FPL.2016.
7577314

[24] Alexander Rucker, Matthew Vilim, Tian Zhao, Yaqi Zhang, Raghu
Prabhakar, and Kunle Olukotun. 2021. Capstan: A Vector RDA for
Sparsity. In MICRO-54: 54th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (Virtual Event, Greece) (MICRO ’21). Asso-
ciation for Computing Machinery, New York, NY, USA, 1022–1035.
https://doi.org/10.1145/3466752.3480047

[25] Amit Sabne. 2020. XLA : Compiling Machine Learning for Peak Per-
formance.

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017.
Attention is All you Need. In Advances in Neural Information Pro-
cessing Systems, I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran As-
sociates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[27] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Liò, and Yoshua Bengio. 2018. Graph Attention Net-
works. arXiv:1710.10903 [stat.ML]

[28] Rohan Yadav, Alex Aiken, and Fredrik Kjolstad. 2022. DISTAL: the
distributed tensor algebra compiler. In Proceedings of the 43rd ACM
SIGPLAN International Conference on Programming Language Design
and Implementation. 286–300.

https://arxiv.org/abs/1904.10509
https://doi.org/10.1145/3352460.3358276
https://doi.org/10.1109/jproc.2021.3098483
https://doi.org/10.1109/jproc.2021.3098483
https://doi.org/10.1109/ISCAS48785.2022.9937659
https://doi.org/10.1109/HPCA.2018.00059
https://doi.org/10.1109/HPCA.2018.00059
https://doi.org/10.48550/ARXIV.2208.14610
https://arxiv.org/abs/2304.01433
https://openreview.net/forum?id=SJU4ayYgl
https://arxiv.org/abs/2104.08378
https://doi.org/10.1109/FPL.2016.7577314
https://doi.org/10.1109/FPL.2016.7577314
https://doi.org/10.1145/3466752.3480047
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/1710.10903

	Abstract
	References

