
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Compilation of Sparse Array Programming Models

RAWN HENRY∗,Massachusetts Institute of Technology, USA

OLIVIA HSU∗, Stanford University, USA

ROHAN YADAV, Stanford University, USA

STEPHEN CHOU,Massachusetts Institute of Technology, USA

KUNLE OLUKOTUN, Stanford University, USA

SAMAN AMARASINGHE,Massachusetts Institute of Technology, USA

FREDRIK KJOLSTAD, Stanford University, USA

This paper shows how to compile sparse array programming languages. A sparse array programming language

is an array programming language that supports element-wise application, reduction, and broadcasting of

arbitrary functions over dense and sparse arrays with any fill value. Such a language has great expressive

power and can express sparse and dense linear and tensor algebra, functions over images, exclusion and

inclusion filters, and even graph algorithms.

Our compiler strategy generalizes prior work in the literature on sparse tensor algebra compilation to

support any function applied to sparse arrays, instead of only addition and multiplication. To achieve this, we

generalize the notion of sparse iteration spaces beyond intersections and unions. These iteration spaces are

automatically derived by considering how algebraic properties annotated onto functions interact with the fill

values of the arrays. We then show how to compile these iteration spaces to efficient code.

When compared with two widely-used Python sparse array packages, our evaluation shows that we

generate built-in sparse array library features with a performance of 1.4× to 53.7× when measured against

PyData/Sparse for user-defined functions and between 0.98× and 5.53× when measured against SciPy/Sparse

for sparse array slicing. Our technique outperforms PyData/Sparse by 6.58× to 70.3×, and (where applicable)

performs between 0.96× and 28.9× that of a dense NumPy implementation, on end-to-end sparse array

applications. We also implement graph linear algebra kernels in our system with a performance of between

0.56× and 3.50× compared to that of the hand-optimized SuiteSparse:GraphBLAS library.

CCS Concepts: • Software and its engineering→ Source code generation; Domain specific languages.

Additional Key Words and Phrases: Sparse Array Programming, Sparse Arrays, Compilation

ACM Reference Format:
Rawn Henry, Olivia Hsu, Rohan Yadav, Stephen Chou, Kunle Olukotun, Saman Amarasinghe, and Fredrik

Kjolstad. 2021. Compilation of Sparse Array Programming Models. Proc. ACM Program. Lang. 5, OOPSLA,
Article 1 (November 2021), 33 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

∗
Both authors contributed equally to the paper

Authors’ addresses: Rawn Henry, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA, 02139, USA,

rawn@mit.edu; Olivia Hsu, Stanford University, 353 Jane Stanford Way, Stanford, CA, 94305, USA, owhsu@stanford.edu;

Rohan Yadav, Stanford University, 353 Jane Stanford Way, Stanford, CA, 94305, USA, rohany@cs.stanford.edu; Stephen

Chou, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA, 02139, USA, s3chou@csail.mit.edu; Kunle

Olukotun, Stanford University, 353 Jane Stanford Way, Stanford, CA, 94305, USA, kunle@stanford.edu; Saman Amarasinghe,

Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA, 02139, USA, saman@csail.mit.edu; Fredrik Kjolstad,

Stanford University, 353 Jane Stanford Way, Stanford, CA, 94305, USA, kjolstad@stanford.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/11-ART1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 R. Henry, O. Hsu, R. Yadav, S. Chou, K. Olukotun, S. Amarasinghe, and F. Kjolstad

1 INTRODUCTION
Arrays are fundamental data structures that let us represent collections of numbers, tabular data,

grids embedded in Euclidean space, tensors, and more. They naturally map to linear memory and

it is unsurprising that they have been the central data structure in languages built for numerical

computation since Fortran [Backus et al. 1957] and APL [Iverson 1962]. In fact, Python became

prevalent in computational science, data analytics, and machine learning partially due to the

introduction of the NumPy array programming library [Harris et al. 2020].

An array programming model is a programming model whose expressions operate on arrays

as a whole through element-wise operations, broadcasts, and reductions over dimensions. From

APL [Iverson 1962] introduced in 1960 to NumPy [Harris et al. 2020] today, array programming

languages have played a prominent role in our programs. For example, NumPy permits element-wise

operations and reductions with any user-defined function, broadcasting, and slicing.

A sparse array is an array where many components have the same value, known as a fill value.
Sparse arrays are becoming increasingly important as the need for numerical computation across

large, sparsely populated systems increases in scientific computing, data analytics, and machine

learning. They can be used to model sparse matrices and tensors [Virtanen et al. 2020], sparse

grids [Hu et al. 2019], and even graphs [Mattson et al. 2013]. For example, sparse arrays can

represent the number of friends shared by every pair of people (the sparsity arises because most

people share no friends), the set of nodes to exclude in each step of breadth-first search (Section 8.3),

or black-and-white MRI images (Section 8.4.1).

Therefore, there is a need for a sparse array programming model as a counterpart to—and gener-

alization of—dense array programming models. In fact, at the time of writing, the roadmap [SciPy

2021] of the ubiquitous SciPy library [Virtanen et al. 2020] calls directly for a sparse NumPy as one

of five goals. The PyData/Sparse project has responded with an implementation [Abbasi 2018], but it

relies on data transformation to implement the significant generality of sparse array programming

and therefore runs significantly slower than what is possible.

Table 1. Features in our sparse array programming model compared to those in related programming models.

Paradigm

Supported Functions Data Representation

Slicing(+,×) Any semiring Any

Dense

Sparse Any #

of dims.(∧,∨), . . . foo, . . . Zero fill Any fill

Dense Array Programming (NumPy) ✔ ✔ ✔ ✔ ✘ ✘ ✔ ✔
Dense Tensor Algebra ✔ ✘ ✘ ✔ ✘ ✘ ✔ ✔
Sparse Tensor Algebra (TACO) ✔ ✘ ✘ ✔ ✔ ✘ ✔ ✘
Sparse Linear Algebra ✔ ✘ ✘ ✔ ✔ ✘ ✘ ✘
Sparse LA on Any Semiring (GraphBLAS) ✔ ✔ ✘ ✔ ✔ ✘ ✘ ✔
Sparse Array Programming (This Work) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

In this paper, we present the first sparse array programming model compiler that can fuse and

compile any expression involving sparse and dense arrays with arbitrary (implicit) fill values, where

the operators and reductions can be any function. The array expression 𝐴𝑖 𝑗 = (𝐵𝐶𝑖 𝑗

𝑖 𝑗
) ∗ ¬𝐷𝑖 𝑗 is an

example of a computation that cannot be expressed in sparse tensor algebra (since it uses operations

that are not additions or multiplications) and that cannot be expressed in dense array programming

(if the inputs 𝐵,𝐶, and 𝐷 are too large to store without compression). Table 1 and Fig. 1 show how

our proposed sparse programming model is a superset of the programming models of NumPy dense

array programming, TACO sparse tensor algebra, and the GraphBLAS [Mattson et al. 2013] graph

algorithm library. In order to execute arbitrary functions, we generalize the compilation theory

of Kjolstad et al. [2017] to support any sparse iteration space. We have also extended the sparse

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Compilation of Sparse Array Programming Models 1:3

iteration theory to support generating code to compute on sliced windows of data, which allows

for operating on subsets of sparse arrays in place. In addition, we built an API for defining these

functions and for declaring their properties. Our technical contributions are:

(1) A generalization of sparse iteration space theory to include any sparse iteration space, instead

of only those that can be described by intersections and unions.

(2) Code generation to support any sparse iteration space for arbitrary user-defined functions.

(3) Derivation of sparse iteration spaces from functions decorated with mathematical properties.

(4) Extension of sparse arrays to allow any fill value (not just 0) for compressed entries.

(5) Generalization of iteration spaces to allow iteration over sub-array slices of sparse arrays.

Sparse
Tensor
Algebra
(TACO)

Dense
Tensor
Algebra

Sparse
Linear

Algebra

Sparse
Linear Algebra

 on Any Semiring
(GraphBLAS)

Dense Array
Programming
(NumPy, APL)

Sparse Array Programming

Fig. 1. Comparison of programming models.

We evaluate these contributions by

comparing against implementations

of sparse array primitives in popu-

lar and state-of-the-art sparse array

programming libraries like SciPy and

PyData/Sparse, as well as in larger

applications like image processing

and graph processing. Our evalua-

tion shows a normalized speedup of

0.98× to 5.63× compared to SciPy/S-

parse for sub-array slicing and be-

tween 1.4× and 43.4× compared to

PyData/Sparse for universal func-

tions. Furthermore, we demonstrate our technique’s ability to fuse computation with a performance

improvement of 12.7× to 43.4× for fused universal functions when measured against PyData/S-

parse. In the context of graph kernels, our system performs between 0.56× and 3.50× that of a

hand-optimized application-specific baseline system, SuiteSparse:GraphBLAS. For practical array

algorithms, we outperform PyData/Sparse by between 6.4× to 70.3×, and the relative performance

of NumPy compared to our system is between 0.96× to 28.93× when a dense implementation is

feasible.

2 MOTIVATION
Array programming is a fundamental computation model that supports a wide variety of features,

including array slicing and arbitrary element-wise, reduction, and broadcasting operators. However,

current dense array implementations cannot store and process the increasingly large and sparse

data emerging from applications like machine learning, graph analytics, and scientific computing.

Sparse tensor algebra, on the other hand, is a powerful tool that allows for multilinear computation

on tensors—higher-order matrices and vectors. Multi-dimensional arrays can be represented as

tensors, which means that sparse tensor algebra allows for computation on sparse arrays, but there

are limitations to the existing sparse tensor algebra model.

Tensor algebra computation and reductions are only defined across additions and multiplications.

Element-wise addition 𝐴 = 𝐵 + 𝐶 takes the union of non-zero input values and element-wise

multiplication 𝐴 = 𝐵 ∗ 𝐶 takes the intersection, as illustrated in Fig. 2a. However, there are

situations where the user would want to perform more general computation. One example is

𝐴𝑖 𝑗 = (𝐵𝐶𝑖 𝑗

𝑖 𝑗
) ∗ ¬𝐷𝑖 𝑗 , which raises 𝐵 to the power of 𝐶 (power) and filters the result by the logical

inverse of 𝐷 . Arbitrary functions like power are not expressible using sparse tensor algebra since
they cannot be defined by combining the intersection (multiplication) or union (addition) of non-

zero input values, as shown in Fig. 2. Sparse tensor algebra also limits the definition of sparsity to

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 R. Henry, O. Hsu, R. Yadav, S. Chou, K. Olukotun, S. Amarasinghe, and F. Kjolstad

U

𝑏 𝑏 + 𝑐 𝑐 0

𝐵 𝐶

U

0 𝑏 ∗ 𝑐 0 0

𝐵 𝐶

(a) Add (union) and multiply (intersection)
computation space with 0 compression

U

1 0

0

𝑏𝑐

0 0

0

1

𝐷

𝐵 𝐶

(b) Masked power with 0
compression of the result 𝐴

U

1 0

0

𝑏𝑐

0 0

0

1

𝐷

𝐵 𝐶

(c) Masked power with 1
compression of the result 𝐴

Fig. 2. Computation spaces of traditional tensor algebra operators (a) versus arbitrary function computation

for the masked power example: 𝐴𝑖 𝑗 = (𝐵𝐶𝑖 𝑗

𝑖 𝑗
) ∗ ¬𝐷𝑖 𝑗 with 0-value (b) and 1-value (c) compression of 𝐴.

Color-filled regions require the computation denoted with black text, and white-filled regions are ignored.

Fill Values

Tensor Algebra Compiler.Array Index Notation

Format Language

Scheduling Language

Imperative CodeLow-Level
IR

Iteration Spaces Iteration Lattices

Autoscheduler

 User-Defined Functions
 Slicing

Fig. 3. Overview of the sparse array compiler system. Gray components are new contributions of this work.

having a significant number of zeros that can be compressed away (see Fig. 2b). Our power example

motivates the need to compress out other values instead—namely 1 since 𝑏0 ∗ 1 = 1 (see Fig. 2c).

Furthermore, the 𝐴𝑖 𝑗 = (𝐵𝐶𝑖 𝑗

𝑖 𝑗
) ∗ ¬𝐷𝑖 𝑗 example is motivated by applications like medical image

processing and graph algorithms, which often perform computations that apply filters and masks

(like the ∗¬𝐷𝑖 𝑗 sub-expression). Generalizing tensor algebra to any function requires formalizing

the function’s properties and computational behavior. Finally, tensor algebra expressions are also

restricted to computation on entire tensors, even though it can be useful to extract and compute on

sub-arrays. These limitations motivate us to generalize concepts from sparse tensor algebra and

dense array programming to propose a sparse array programming model and a compilation-based

system that realizes it.

3 OVERVIEW
We implemented the sparse array programming model and sparse array compilation as extensions

to the open-source sparse tensor algebra compiler framework TACO [Kjolstad et al. 2017], as

depicted in Fig. 3. Our extension is open-source and publicly available at https://github.com/tensor-

compiler/taco/tree/array_algebra. Like the TACO compiler, our sparse array compiler takes an

algorithm description, a format language [Chou et al. 2018], and a scheduling language [Senanayake

et al. 2020].

Unlike the TACO compiler, which compiles a tensor algebra language [Kjolstad et al. 2017],

the input algorithm description for our sparse array compiler is a sparse array programming

model, further described in Section 4. The programming model supports applying any functions

across sparse arrays through a new language we call array index notation (see Section 4.2) and

compressing out any value from the sparse arrays through an extended format language (see

Section 4.1). Array index notation uses sparse tensors to represent sparse arrays and allows the

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

https://github.com/tensor-compiler/taco/tree/array_algebra
https://github.com/tensor-compiler/taco/tree/array_algebra

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Compilation of Sparse Array Programming Models 1:5

description of any universal function along with its mathematical properties, which is detailed

in Section 4.3. Additionally, computations in array index notation can be performed on sparse

sub-arrays using sparse array slicing and striding, as also detailed in Section 4.2. The combination

of sparse array representations and their fill values, array index notation, sparse array slicing,

and user-defined functions forms the sparse array programming model. Figs. 4 and 5 show how

programmers can express complex computations using this programming model
1
.

Arbitrary user-defined functions are specified by a description of the function’s computation and

iteration pattern. The iteration pattern describes how the compiler should iterate through values of

the input array space, defined directly through a set algebra composed of intersections, unions, and

complements of sparse array coordinates. Instead of providing an explicit iteration pattern, users

may provide mathematical properties of the function which the sparse array compiler uses, along

with fill values of the input tensors, to automatically derive an iteration pattern (see Section 4.3).

We describe these generalized iteration spaces and property derivations for generalized functions

in Section 5.

The sparse array compiler uses the descriptions of generalized iteration spaces to create an

extension of the iteration lattice intermediate representation (IR) described by Kjølstad [2020] to

simplify loop and case-statement generation for an input sparse tensor computation. We describe

the necessary generalizations to the iteration lattice IR in Section 6 to represent iteration over any

iteration space, not just those described by intersection and union expressions. The sparse array

compiler uses the generalized iteration lattice to generate low-level code that performs iteration

over any iteration space. We describe how to lower an iteration lattice into low-level code as well

as how to generate code that operates on slices of tensors in Section 7. Fig. 6 shows an example of

optimized code that the sparse array compiler can generate using these techniques.

Finally, in Section 8 we not only evaluate our sparse array compiler against an existing sparse

array programming library that provides as much generality as our system, but also against special

purpose libraries that hand-code implementations of specific sparse array programs.

4 SPARSE ARRAY PROGRAMMING MODEL
In this section, we describe the features of a general sparse array programming model through a

programming language we call array index notation that supports complex computations on sparse

arrays. Array index notation generalizes the conventional tensor index notation by relaxing the

definition of sparse arrays and supporting a wider range of operations on sparse arrays.

4.1 Sparse Arrays and Fill Values
Array index notation operates on multi-dimensional arrays. A multi-dimensional array can be

viewed as a map from sets of (integer) coordinates to their corresponding values, which may be of

any data type (e.g., floating-point values, integers, etc.).

An array is sparse if many of its components have the same value, which we refer to as the

array’s fill value. For instance, an array that encodes distances between directly-connected points

in a road network (with two points having a distance of∞ if they are not directly connected by

a road) is very likely sparse since most pairs of points in the network are not directly connected,

meaning most components in the array would be∞. This distance array can be said to have a fill

value of ∞, while all other (i.e., non-infinite) values in the array are its defined values.
Sparse arrays can be efficiently stored inmemory using various data structures (formats) that omit

all (or at least most) of the arrays’ fill values. Fig. 7 shows two examples of sparse two-dimensional

array (i.e., matrix) formats. The coordinate list (COO) format stores the row/column coordinates

1
Example code using the PyData/Sparse API can be found in Appendix A.2 in the supplemental materials

2
.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 R. Henry, O. Hsu, R. Yadav, S. Chou, K. Olukotun, S. Amarasinghe, and F. Kjolstad

1 // Define a dense vector format

2 // and a sparse vector format

3 // with fill values of 0.

4 Format dv({dense}, 0);

5 Format sv({compressed}, 0);

6

7 // Declare inputs to be sparse

8 // vectors and declare output

9 // to be a dense vector.

10 Tensor<int> a(N, dv);

11 Tensor<int> b(N, sv);

12 Tensor<int> c(N, sv);

13

14 // Define computation that computes

15 // element-wise GCD of two vectors.

16 IndexVar i;

17 a(i) = gcd(b(i), c(i));

18

19 // Perform computation by generating

20 // and executing code in Fig. 6.

21 std::cout << a << std::endl;

Fig. 4. C++ code that uses our sparse array compiler to compute the element-wise
greatest common divisor (GCD) of two sparse vectors.

1 def gcd(x,y):

2 x,0 => { return abs(x); }

3 0,y => { return abs(y); }

4 x,y => {

5 x = abs(x);

6 y = abs(y);

7 while (x != 0) {

8 int t = x;

9 x = y % x;

10 y = t;

11 }

12 return y;

13 }

14 iteration_space:

15 {x ≠ 0} ∪ {y ≠ 0}

Fig. 5. A function that imple-
ments the GCD operation. It con-
tains optimized implementations
for the cases where x or y is 0, and
the iteration space is explicitly de-
fined using iteration algebra.

1 int pb = b_pos[0];

2 int pc = c_pos[0];

3 while (pb < b_pos[1] &&

4 pc < c_pos[1]) {

5 int ib = b_crd[pb];

6 int ic = c_crd[pc];

7 int i = min(ib, ic);

8 if (ib == i && ic == i) {

9 int x = b_vals[pb];

10 int y = c_vals[pc];

11 x = abs(x);

12 y = abs(y);

13 while (x != 0) {

14 int t = x;

15 x = y % x;

16 y = t;

17 }

18 a_vals[i] = y;

19 } else if (ib == i) {

20 int x = b_vals[pb];

21 a_vals[i] = abs(x);

22 } else {

23 int y = c_vals[pc];

24 a_vals[i] = abs(y);

25 }

26 pb += (ib == i);

27 pc += (ic == i);

28 }

29 while (pb < b_pos[1]) {

30 int x = b_vals[pb];

31 a_vals[i] = abs(x);

32 pb++;

33 }

34 while (pc < c_pos[1]) {

35 int y = c_vals[pc];

36 a_vals[i] = abs(y);

37 pc++;

38 }

Fig. 6. Code that our technique generates to compute 𝑎𝑖 = gcd(𝑏𝑖 , 𝑐𝑖),
assuming 𝑏 and 𝑐 are sparse vectors with zeros compressed out.

and value of every defined value in the array, while the compressed sparse row (CSR) format

additionally compresses out the row coordinates by using a positions array to track which defined

values belong to each row. Chou et al. [2018, 2020] showed how a format language can precisely

describe a wide range of sparse array formats in a way that lets compilers generate efficient code

to compute using the arrays stored in those formats. However, this language assumes that sparse

arrays always have a fill value of 0, which, as the distance array example shows, is not always true.

We generalize the data representation language to support arbitrary fill values (such as ∞ and 1)

by requiring that the compressed value be specified as part of the sparse array format description.

Fig. 7b, for example, shows how both CSR and COO can be specified to have fill values of 1. Array

components that are not explicitly stored are called implicit fill values, and components that are

explicitly stored but also equal the fill value are called explicit fill values.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Compilation of Sparse Array Programming Models 1:7

1 1 1 1
2 1 3 1
1 4 1 1
1 1 1 5 1Fill Value

0 1 3 4 5Row
Positions

31 0 2 1Col
Coordinates

1 2 3 4 5Values

Compressed Sparse Row (CSR)

0 1 0 0
2 0 3 0
0 4 0 0
0 0 0 5

0 1 3 4 5Row
Positions

31 0 2 1Col
Coordinates

1 2 3 4 5Values

0Fill Value

Compressed Sparse Row (CSR)

1Fill Value

0 1 1 2Row
Coordinates

1 0 2 1Col
Coordinates

1 2 3 4 5Values

Coordinate (COO)

Defined
Value

3
3

Explicit
Fill Value Implicit Fill Value

(a) CSR matrix with a fill value of 0 (b) CSR and COO matrices with a fill value of 1

Fig. 7. Examples of varying sparse array formats with different fill values.

1 30 00 02 0

0 1 0 0
2 0 3 0
0 4 0 0
0 0 0 5

0 1 0 0
2 0 3 0
0 4 0 0
0 0 0 5

0 1 00 30 023 1
2 0 1 0 5 3= + +=

<latexit sha1_base64="UqfzedZA9k7jMKJ2NWve0tfj30s=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj14jGCeUCyhNnJbDLJPJaZWSEs+QcvHhTx6v9482+cJHvQxIKGoqqb7q4o4cxY3//2VlbX1jc2C1vF7Z3dvf3SwWHDqFQTWieKK92KsKGcSVq3zHLaSjTFIuK0GY3upn7ziWrDlHy044SGAvclixnB1kmNm27GhpNuqexX/BnQMglyUoYctW7pq9NTJBVUWsKxMe3AT2yYYW0Z4XRS7KSGJpiMcJ+2HZVYUBNms2sn6NQpPRQr7UpaNFN/T2RYGDMWkesU2A7MojcV//PaqY2vw4zJJLVUkvmiOOXIKjR9HfWYpsTysSOYaOZuRWSANSbWBVR0IQSLLy+TxnkluKwEDxfl6m0eRwGO4QTOIIArqMI91KAOBIbwDK/w5invxXv3PuatK14+cwR/4H3+AJqvjyc=</latexit>

Aij

<latexit sha1_base64="yVZau3LgpLvFGIu5PG7zYq3vDss=">AAAB+XicbVDLSsNAFL2pr1pfUZduBotQNyURUXFV6sZlBfuANoTJdNqOnUzCzKRQQv/EjQtF3Pon7vwbp2kW2nrgXg7n3MvcOUHMmdKO820V1tY3NreK26Wd3b39A/vwqKWiRBLaJBGPZCfAinImaFMzzWknlhSHAaftYHw399sTKhWLxKOextQL8VCwASNYG8m37bqfsopze3H+lPWZb5edqpMBrRI3J2XI0fDtr14/IklIhSYcK9V1nVh7KZaaEU5npV6iaIzJGA9p11CBQ6q8NLt8hs6M0keDSJoSGmXq740Uh0pNw8BMhliP1LI3F//zuoke3HgpE3GiqSCLhwYJRzpC8xhQn0lKNJ8agolk5lZERlhiok1YJROCu/zlVdK6qLpXVffhslyr53EU4QROoQIuXEMN7qEBTSAwgWd4hTcrtV6sd+tjMVqw8p1j+APr8wdwvZGX</latexit>

Bi(0:2)j(0:2)
<latexit sha1_base64="J//os2bHVUOSd8ot59Ab3v9lVLo=">AAAB+XicbVDLSgNBEOz1GeNr1aOXwSAkl7Abg0pOwVw8RjAPSJZldjKbjJl9MDMbCEv+xIsHRbz6J978GyfJHjSxoKGo6qa7y4s5k8qyvo2Nza3tnd3cXn7/4PDo2Dw5bcsoEYS2SMQj0fWwpJyFtKWY4rQbC4oDj9OON27M/c6ECsmi8FFNY+oEeBgynxGstOSaZsNNWdGuXZWeipVatTRzzYJVthZA68TOSAEyNF3zqz+ISBLQUBGOpezZVqycFAvFCKezfD+RNMZkjIe0p2mIAyqddHH5DF1qZYD8SOgKFVqovydSHEg5DTzdGWA1kqveXPzP6yXKv3VSFsaJoiFZLvITjlSE5jGgAROUKD7VBBPB9K2IjLDAROmw8joEe/XlddKulO3rsv1QLdTvsjhycA4XUAQbbqAO99CEFhCYwDO8wpuRGi/Gu/GxbN0wspkz+APj8wd7hpGe</latexit>

Ci(1:3)j(2:4)

<latexit sha1_base64="A8ckXocd8iN9Byun0+MtQZw/zDo=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRahXspuES09Fb14rGA/oF1KNs22oUl2SbJCWfo3vHhQxKt/xpv/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyG5tb2zv53cLe/sHhUfH4pK2jRBHaIhGPVDfAmnImacsww2k3VhSLgNNOMLmb+50nqjSL5KOZxtQXeCRZyAg2VuqTQcrKbr1Wr17OBsWSW3EXQOvEy0gJMjQHxa/+MCKJoNIQjrXueW5s/BQrwwins0I/0TTGZIJHtGepxIJqP13cPEMXVhmiMFK2pEEL9fdEioXWUxHYToHNWK96c/E/r5eYsOanTMaJoZIsF4UJRyZC8wDQkClKDJ9agoli9lZExlhhYmxMBRuCt/ryOmlXK951xXu4KjVuszjycAbnUAYPbqAB99CEFhCI4Rle4c1JnBfn3flYtuacbOYU/sD5/AEvA5B6</latexit>ci(0:8:2)
<latexit sha1_base64="7/eetyLgm7LKW5FSmU2FQe6cHwo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9oX/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSeui6tWq3v1lpX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPHz9+jcc=</latexit>ai

<latexit sha1_base64="UV85ogU/Z2eCZVO3zx3MwYHmW4s=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRahXspuES09Fb14rGA/oF1KNs22oUl2SbJCWfo3vHhQxKt/xpv/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyG5tb2zv53cLe/sHhUfH4pK2jRBHaIhGPVDfAmnImacsww2k3VhSLgNNOMLmb+50nqjSL5KOZxtQXeCRZyAg2VuoHg5SV3XqtXr2cDYolt+IugNaJl5ESZGgOil/9YUQSQaUhHGvd89zY+ClWhhFOZ4V+ommMyQSPaM9SiQXVfrq4eYYurDJEYaRsSYMW6u+JFAutpyKwnQKbsV715uJ/Xi8xYc1PmYwTQyVZLgoTjkyE5gGgIVOUGD61BBPF7K2IjLHCxNiYCjYEb/XlddKuVrzrivdwVWrcZnHk4QzOoQwe3EAD7qEJLSAQwzO8wpuTOC/Ou/OxbM052cwp/IHz+QMtdJB5</latexit>

bi(0:8:2)

(a)Windowing example (b) Striding example

Fig. 8. Array index notation supports computations on slices of sparse arrays.

4.2 Array Index Notation
As with tensor index notation, computations on multi-dimensional arrays can be expressed in array

index notation by specifying how each component of the result array should be computed in terms

of components of the input arrays. Element-wise addition of two three-dimensional arrays, for

instance, can be expressed as 𝐴𝑖 𝑗𝑘 = 𝐵𝑖 𝑗𝑘 +𝐶𝑖 𝑗𝑘 , which specifies that each component of the result

array 𝐴 should be computed as the sum of its corresponding components in the input arrays 𝐵 and

𝐶 . Array index notation can also express computations that reduce over components of operand

arrays along one or more dimensions. For example, 𝑦𝑖 =
∑

𝑗 𝐴𝑖 𝑗 expresses a computation that

defines each component of 𝑦 to be the sum of all components in the corresponding row of 𝐴. The

full syntax of array index notation can be found in Appendix A.1 in the supplemental materials
2
.

Array index notation extends tensor index notation in twoways. First, array index notation allows

programmers to define arbitrary functions (on top of addition and multiplication) and to use these

functions in computations. So, for instance, a programmer can define a function xor that computes

the exclusive or of three scalar inputs. The programmer may then use this function for element-wise

computation with three-dimensional arrays, which can be expressed as 𝐴𝑖 𝑗𝑘 = xor(𝐵𝑖 𝑗𝑘 ,𝐶𝑖 𝑗𝑘 , 𝐷𝑖 𝑗𝑘).
User-defined functions can also be used in reductions. For example, assuming min is a binary

function that returns the smallest argument as output, the statement 𝑦𝑖 = min𝑗 𝐴𝑖 𝑗 expresses a

computation that returns the minimum value in each row of a two-dimensional array. Section 4.3

describes how to define custom array index notation functions.

Second, array index notation allows users to slice and compute with subsets of sparse arrays.

For instance, as Fig. 8a shows, the statement 𝐴𝑖 𝑗 = 𝐵𝑖 (0:2) 𝑗 (0:2) +𝐶𝑖 (1:3) 𝑗 (2:4) specifies a computation

that extracts 2 × 2 sub-arrays from 𝐵 and 𝐶 and element-wise adds the sub-arrays, producing a

2 × 2 result array 𝐴. Array index notation also supports strided accesses of sparse arrays. For

instance, as Fig. 8b shows, the statement 𝑎𝑖 = 𝑏𝑖 (0:8:2) + 𝑐𝑖 (0:8:2) specifies computation that extracts

2
A link to the supplemental materials can be found here.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

https://fredrikbk.com/publications/Sparse_Array_Programming_APPENDIX.pdf

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 R. Henry, O. Hsu, R. Yadav, S. Chou, K. Olukotun, S. Amarasinghe, and F. Kjolstad

and element-wise adds the components with even-valued coordinates from 𝑏 and 𝑐 . (This slicing

notation corresponds to the standard Python syntax x[lo:hi:st], which accesses an array x from

coordinate lo to non-inclusive coordinate hi with stride st.) Slicing operations in array index

notation can be viewed semantically as first extracting the sliced array into a new array where each

dimension ranges from 0 to the size of the slice, and then using that new array in the rest of the

computation. However, just as in dense array programming, slicing operations should be oblivious

to the underlying data structures used and should not result in unnecessary data movement or

reorganization. Slicing operations should instead adapt the implementation of the array index

notation statement to the desired slicing operation and format of the sparse array. Section 7.3

describes our technique to emit efficient code to slice sparse arrays.

4.3 Generalized Functions

1 def bitwise_and(x,y):

2 x,y => {

3 return x & y;

4 }

5 properties:

6 commutative

7 annihilator=0

Fig. 9. A function that imple-
ments the bitwise-and opera-
tion decorated with algebraic
properties. If the fill values of
x and y are 0, then the iter-
ation space for this function
will be an intersection.

Programmers can define custom functions that can be used to ex-

press complex sparse array computations in array index notation.

Programmers specify the semantics of a custom function by providing

an implementation that, given any (fixed) number of scalar inputs,

computes a scalar result. Function implementations are written in a

C-like intermediate language that provides standard arithmetic and

logical operators, mathematical functions found in the C standard

library, and imperative constructs such as if-statements and loops.

Figs. 5 and 9 illustrate how users can specify the semantics of simpler

functions like bitwise-and as well as more complex functions like the

greatest common divisor (GCD) function, which is implemented using

the Euclidean algorithm.

A user may optionally specify, for each combination of fill value

and defined value inputs, how the function can be more efficiently

computed for that specific combination of inputs. For example, lines

2–3 in Fig. 5 shows how a programmer can specify that, when either argument is zero, the gcd
function simply has to return the value of the other argument. Using these additional specifications,

our technique can generate code like in Fig. 6, which computes the element-wise GCD of two

input vectors without having to explicitly invoke the Euclidean algorithm whenever one input is

guaranteed to be zero (see lines 19–25 and 29–38).

To support efficient computing on sparse arrays with a custom function, the user must also

define the subset of components in the input arrays that could return a value other than the result

array’s fill value. This can be done explicitly in a language we define called iteration algebra, which
we describe in Section 5. Fig. 5 shows how a user can define the iteration algebra to specify that the

gcd function may return a non-zero result only if at least one input is non-zero. Sections 6.2 and 7

explain how our technique can then use this iteration algebra to generate the code in Fig. 6, which

computes the element-wise GCD by strictly iterating over the defined values in vectors 𝑏 and 𝑐 .

Instead of explicitly specifying iteration algebras for custom functions, users may also annotate

functions with any subset of four predefined properties from which our technique can infer

optimized iteration algebras:

• Commutative: A function is commutative if the order in which arguments are passed to

the function does not affect the result. Arithmetic addition is an example of a commutative

function, since 𝑥 + 𝑦 = 𝑦 + 𝑥 for any 𝑥 and 𝑦.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Compilation of Sparse Array Programming Models 1:9

(0, 0)

(1, 0)

(2, 0)

(0, 1)

(1, 1)

(2, 1)

(0, 2)

(1, 2)

(2, 2)

(0, 3)

(1, 3)

(2, 3)

(a)Dense iteration space, with all
points present.

(0, 0) (0, 1)

(2, 1)

(1, 2)

(2, 3)

(b) Sparse iteration space, with
some points missing.

𝐴

U
(0, 0)
(0, 1)

(1, 2)

(2, 1)
(2, 3)

(0, 2)

(0, 3)(1, 0)

(1, 1)
(1, 3)

(2, 0)
(2, 2)

(c) Set interpretation of Fig. 10b.

Fig. 10. A grid representation of iteration spaces showing a dense and sparse iteration space for 4 × 3 matrix.

• Idempotent: A function is idempotent if, for any 𝑥 , the function evaluates to 𝑥 whenever

all arguments are 𝑥 (i.e., 𝑓 (𝑥, ..., 𝑥) = 𝑥). The max function is an example of an idempotent

function, since max(𝑥, 𝑥) = 𝑥 for any 𝑥 .

• Annihilator(x[, p]): A function has an annihilator 𝑥 if the function evaluates to 𝑥 whenever

any argument is 𝑥 . Arithmetic multiplication, for instance, has 0 as its annihilator since

multiplying 0 by any value yields 0. If 𝑝 is also specified, then the function is only guaranteed

to evaluate to 𝑥 if the 𝑝-th argument (as opposed to any argument) is 𝑥 .

• Identity(x[, p]): A binary function has an identity 𝑥 if, for any 𝑦, the function evaluates to 𝑦

whenever one argument is 𝑥 and the other argument is 𝑦. Multiplication, for instance, has 1

as its identity since multiplying 1 by any 𝑦 yields 𝑦. If 𝑝 is also specified, then the function is

only guaranteed to evaluate to 𝑦 if the 𝑝-th argument (as opposed to any argument) is 𝑥 .

Fig. 9 demonstrates how a programmer can specify that the bitwise_and function is commutative

and has 0 as its annihilator. From these properties, our technique infers that the bitwise_and
function (with inputs 𝑥 and 𝑦) has iteration algebra 𝑥 ∩ 𝑦 assuming that the input arrays have 0 as

fill values, as we will explain in Section 5.2.

5 GENERALIZED ITERATION SPACES
Having described the desired features of a sparse array programming model, we now explain how

our sparse array compiler reasons about and implements these features. In this section, we describe

how our system reasons about user-defined functions iterating over any iteration space through

an IR called iteration algebra. Then, we describe how an iteration algebra can be derived from

mathematical properties of user-defined functions.

5.1 Iteration Algebra
We can view the iteration space of loops over dense arrays as a hyper-rectangular grid of points by

taking the Cartesian product of the iteration domain of each loop, as in Fig. 10a. A sparse iteration

space, shown in Fig. 10b, is a grid with missing points called holes, which take on the fill value
attached to the format of that array. Another way to view iteration spaces is as a Venn diagram of

coordinates where the universe is the set of all points in a dense iteration space. Sparse arrays only

define values at some of the possible coordinates in the dense space, forming subsets within the

universe, as shown in Fig. 10c. This view naturally leads to a set expression language for describing

array iteration spaces, which we introduce, called iteration algebra.
Iteration algebra is defined by introducing index variables into set expressions, where the variables

in the set expressions are the coordinate sets of sparse arrays. The index variables index into the

sparse arrays, controlling which coordinates are compared in the set expression. For example, the

iteration algebra for 𝑐𝑖 =
∑

𝑗 𝐴𝑖 𝑗𝑏 𝑗 (i.e., sparse matrix-vector multiplication) is 𝐴𝑖 𝑗 ∩ 𝑏 𝑗 , where the 𝑗

in 𝐴𝑖 𝑗 indexes into the second dimension of 𝐴 and the 𝑗 in 𝑏 indexes into the first dimension of 𝑏.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 R. Henry, O. Hsu, R. Yadav, S. Chou, K. Olukotun, S. Amarasinghe, and F. Kjolstad

U

m
a
x
(𝐴
,∞

, 0
) m

a
x(∞

, 𝐵
,
0)

max(∞,∞,𝐶)

max

(𝐴, 𝐵, 0)

max

(𝐴,∞,𝐶)
max

(∞, 𝐵,𝐶)

max(𝐴, 𝐵,𝐶)

max(∞,∞, 0)𝐶

𝐴 𝐵

Fig. 11. Illustration of case (1), where 𝑓 is the ternary
max operator, A and B have fill value∞ and C has fill
value 0.

U

min

(𝐴, 𝑣)
min

(𝐴, 𝐵)
min

(𝑣, 𝐵)

min

(𝑣, 𝑣)𝐴 𝐵

Fig. 12. Illustration of case (2), where 𝑓 is the idempo-
tent min operator and all arguments have the same fill
value 𝑣 .

U

max

(𝐴, 42)
max

(𝐴, 𝐵)
max

(−∞, 𝐵)

max

(−∞, 42)𝐴 𝐵

Fig. 13. Illustration of case (3), where 𝑓 is the max
operator with identity −∞, A has fill value 42 and B
has fill value −∞.

Coordinate sets indexed by the same index variable are combined using the set operations. In the

SpMV example, the 𝑗 coordinates of 𝐴 and 𝑏 are combined with an intersection.

The prior work of Kjolstad et al. [2017] intertwines tensor index notation and the corresponding

iteration space by interpreting additions as unions and multiplications as intersections. As such,

it is limited to describing and working with spaces that are represented as compositions of those

intersections and unions. Our iteration algebra addresses this by adding support for set complements,
which makes the language complete: any iteration space can be described as compositions of

intersections, unions, and complements. For example, set complements can be used to express the

iteration space 𝐴𝑖 𝑗 ∩ 𝐵𝑖 𝑗 , which contains only coordinates in 𝐴 that are also not present in 𝐵.

Promoting iteration algebra to an explicit compiler IR has two benefits. First, it lets users directly

express the iteration space of a complicated function whose space can not be derived from simple

mathematical properties. Second, it detaches the compiler machinery that generates low-level loops

to iterate over data structures from the unbounded number of functions that a user may define.

5.2 Deriving Iteration Algebras
To derive the iteration algebra for an array index notation expression, our technique recurses

on the expression and derives the algebra for each subexpression by combining the iteration

algebras of its arguments. As an example, to derive the iteration algebra for the expression

bitwise_and(gcd(𝑏𝑖 , 𝑐𝑖), 𝑑𝑖), our technique first derives the iteration algebra for gcd(𝑏𝑖 , 𝑐𝑖) and
then combines it with 𝑑𝑖 (the iteration algebra for the second argument of bitwise_and).

If a function 𝑓 is explicitly defined with an iteration algebra 𝑎𝑙𝑔, then our technique derives the

iteration algebra for an invocation of 𝑓 by replacing the terms of 𝑎𝑙𝑔 with the iteration algebras

of the function arguments. In Fig. 5, for instance, gcd(x,y) is defined with iteration algebra

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Compilation of Sparse Array Programming Models 1:11

{𝑥 ≠ 0} ∪ {𝑦 ≠ 0}. So to derive the iteration algebra for gcd(𝑏𝑖 , 𝑐𝑖), our technique checks that 𝑏 and

𝑐 have 0 as fill values and, if so, substitutes 𝑏𝑖 for {𝑥 ≠ 0} and 𝑐𝑖 for {𝑦 ≠ 0}, yielding 𝑏𝑖 ∪ 𝑐𝑖 as the

function call’s iteration algebra. (If either 𝑏 or 𝑐 has a fill value other than 0 though, our technique

instead conservatively returns the universe U as the function call’s iteration algebra.)

If a function is instead annotated with properties, our technique attempts to construct an iteration

algebra that minimizes the amount of data to iterate over. This is done by pattern matching on the

cases below, in the order they are presented. In particular, assuming a function 𝑓 is invoked with

arguments 𝑎𝑟𝑔𝑠 in the target expression, we apply the cases below. For each case, we include an

example of resulting iteration space on sample inputs, and visual examples for the first three cases

in Figures 11, 12 and 13.

(1) 𝑓 has an annihilator 𝛼 . When 𝑓 is commutative, our technique returns the algebra U
intersected with the algebras of all arguments in 𝑎𝑟𝑔𝑠 with fill value of 𝛼 . Any coordinate 𝑐

where tensor arguments with fill value 𝛼 are undefined will cause 𝑓 to equal 𝛼 at 𝑐 because 𝛼

annihilates 𝑓 . Therefore, we can iterate only over positions where arguments with fill value

𝛼 are defined.

Example. Consider the ternary max operator max(𝐴, 𝐵,𝐶), where 𝐴 and 𝐵 have fill value∞
(the annihilator for max, so 𝛼 = ∞) and 𝐶 has fill value 0. In this case, we emit an algebra

to iterate over 𝐴 ∩ 𝐵. Consider a coordinate 𝑐 in 𝐶 . If 𝑐 ∈ 𝐴 ∩ 𝐵, then the max operator will

return the maximum of 𝐴, 𝐵, and𝐶 . If 𝑐 ∈ 𝐴 ∩ 𝐵, then no matter what𝐶’s value at 𝑐 is, it will

be annihilated by 𝐴 or 𝐵 having the value of∞ (see Fig. 11).

(2) 𝑓 is idempotent and all arguments have the same fill value 𝑣 . Our technique returns
the union of the algebras of all arguments. Since all arguments have fill value 𝑣 and 𝑓 is

idempotent, 𝑓 applied at all points outside the union of all arguments evaluates to 𝑣 .

Example. Consider the min operator min(𝐴, 𝐵), where 𝐴 and 𝐵 have some arbitrary fill

value 𝑣 . Because min is idempotent, tt is correct to iterate over the union of 𝐴 and 𝐵 —at all

coordinates 𝑐 ∉ 𝐴 ∪ 𝐵, the result of min is min(𝑣, 𝑣) = 𝑣 (see Fig. 12).

(3) 𝑓 has an identity 𝑖. If all arguments have fill value 𝑖 , then our technique returns the union

of the algebras of all arguments, because computation only must occur where the arguments

are defined. If all but one argument have fill value 𝑖 , then our technique can also return the

same algebra, but marks that the resulting expression has the fill value 𝑣 of the remaining

argument, since 𝑓 applied to 𝑖 and 𝑣 returns 𝑣 .

Example. Consider the max operator max(𝐴, 𝐵) where 𝐴 has fill value −∞ and 𝐵 has fill

value 42. Here, we can infer the result tensor should have fill value 42 since the computation

at any coordinate outside of 𝐴 ∪ 𝐵 is max(−∞, 42) = 42 (see Fig. 13).

(4) 𝑓 is not commutative. When 𝑓 is not commutative, cases (1) and (3) can be applied, but

only to the position 𝑝 where the property holds.

Example. Let 𝑓 (𝑎, 𝑏) = 𝑎/𝑏 has an annihilator 0 at position 0, so case (1) could be applied to

iterate only over the defined values of the input array 𝑎 if it had fill value 0.

If none of these cases match but the result array’s fill value is left unspecified by the user, our tech-

nique can still return the union of the algebras of all arguments (and constant propagate through 𝑓

to determine an appropriate fill value for the result). Otherwise, our technique falls back to returning

U as the function call’s iteration algebra. In the case of a function call bitwise_and(x,y) though,

our technique can simply apply the first rule (since Fig. 9 specifies the function is commutative

and has 0 as its annihilator) to derive the iteration algebra 𝑥 ∩ 𝑦 for the function call. Thus, our

technique can infer that the expression bitwise_and(gcd(𝑏𝑖 , 𝑐𝑖), 𝑑𝑖) has (𝑏𝑖 ∪ 𝑐𝑖) ∩𝑑𝑖 as its iteration

space.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 R. Henry, O. Hsu, R. Yadav, S. Chou, K. Olukotun, S. Amarasinghe, and F. Kjolstad

𝑏, 𝑐,𝑑

𝑏,𝑑 𝑐,𝑑

∅

𝑐
𝑏

𝑏,𝑑
𝑐,𝑑

𝑑

𝑏 𝑐

𝑑

𝑏 ∩ 𝑐

𝑏 ∩ 𝑑 𝑐 ∩ 𝑑

𝑏 ∩ 𝑐 ∩ 𝑑

while 𝑏, 𝑐 , and 𝑑 have coordinates left do
if in region [𝑏, 𝑐, 𝑑] then . . .

else if in region [𝑏, 𝑑] then . . .

else if in region [𝑐, 𝑑] then . . .

while 𝑏, 𝑑 has coordinates left do
if in region [𝑏, 𝑑] then . . .

while 𝑐, 𝑑 has coordinates left do
if in region [𝑐, 𝑑] then . . .

𝑏 ∩ 𝑑 𝑐 ∩ 𝑑

𝑏 ∩ 𝑐 ∩ 𝑑

𝑐 ∩ 𝑑

𝑏 ∩ 𝑑

Fig. 14. An iteration lattice for the tensor algebra (𝑏𝑖 + 𝑐𝑖) ∗ 𝑑𝑖 and sparse array bitwise_and(gcd(𝑏𝑖 , 𝑐𝑖), 𝑑𝑖)
expressions, which both have the iteration space (𝑏 ∪ 𝑐) ∩ 𝑑 for index variable 𝑖 , along with the sequential
pseudocode that gets emitted. The lattice points are colored to match the corresponding Venn diagram. The
subsections of the Venn diagram on the right-hand side of the figure correspond to the while-loop conditions
and if-conditions in the code.

6 GENERALIZED ITERATION LATTICES
After constructing an iteration algebra from an array index notation expression as described in

Section 5, our compiler translates the algebra into an IR to represent how tensors must be iterated

over to realize an iteration space corresponding to the iteration algebra. In particular, we generalize

iteration lattices and their construction method described by Kjølstad [2020] to support iteration

algebras containing set complements. We first present an overview of iteration lattices, and then

detail how they must be extended in order to describe any arbitrary iteration space.

6.1 Background
An iteration lattice divides an iteration space into regions, which are described by the tensors that

intersect for each region. These regions are the powerset of the tensors that form the iteration

space. Thus, an iteration space with 𝑘 tensors divides into 2
𝑘 iteration regions (the last region is the

empty set ∅ where no sets intersect). An iteration lattice is a partial ordering of the the powerset of

a set of tensors by size of each subset. Each subset in the powerset is referred to as a lattice point.
Ordering the tensors in this way forms a lattice with increasingly fewer tensors to consider for

iteration, as shown in Fig. 14 for the tensor algebra expression (𝑏𝑖 + 𝑐𝑖) ∗ 𝑑𝑖 and for the sparse

array expression bitwise_and(gcd(𝑏𝑖 , 𝑐𝑖), 𝑑𝑖). An iteration lattice can also be visualized as a Venn

diagram, where points in the lattice correspond to subspace regions, also shown in Fig. 14. We say a

lattice point 𝑝1 dominates another point 𝑝2 (i.e., 𝑝1 > 𝑝2) if 𝑝1 contains all tensors of 𝑝2 as a subset.

An iteration lattice can be used to generate code that coiterates over any iteration space made

up of unions and intersections. The lattice coiterates over several regions until a segment (i.e.,

tensor) runs out of values. It then proceeds to coiterate over the subset of regions that do not have

the exhausted segment. The lattice points enumerate the regions that must be considered at a

particular point in coiteration, and enumerate the regions that must be successively excluded until

all segments have run out of values. In order to iterate over an iteration lattice, we proceed in the

following manner beginning at the top point of the lattice, also referred to as the lattice root point:

(1) Coiterate over the current lattice point’s tensors until any of them runs out of values.

(2) Compute the candidate coordinate, which at each step is the smallest of the current coordinates

of the tensors (assuming coordinates are stored in sorted order within each tensor).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Compilation of Sparse Array Programming Models 1:13

(3) Check what tensors are currently at that coordinate to determine which region the candidate

coordinate is in. The only regions we need to consider are those one level below the current

lattice point since these points exclude the tensor segments that have run out of values.

(4) Follow the lattice edge for the tensors that have run out of values to a new lattice point, and

repeat the process until reaching the bottom.

This strategy leads to successively fewer segments to coiterate and regions to consider, which

generates code consisting of a sequence of coiterating while-loops that become simpler as it moves

down the lattice.

6.2 Representing Set Complements
To support iterating over any iteration space—composed from intersections, unions, and comple-
ments—we introduce the concept of an omitter point to iteration lattices. An omitter point is a

lattice point where computation must not occur, in contrast to the original lattice points where

computation must be performed.

To distinguish omitter points from the original lattice points, we rename the original points to

producer points since they produce a computation. Omitter points with no producers as children

are equivalent to points missing from the lattice, since no loops and conditions need to be emitted

for both cases. By contrast, omitter points that dominate producer points must be kept, since these

omitter points lead to code that explicitly skips computation in a region.

Fig. 15 illustrates the iteration space (upper right) for a function like a logical xorwith a symmetric

difference iteration algebra, along with the corresponding iteration lattice (left) which contains

an omitter point (marked with a red ×) at 𝑎, 𝑏. The pseudocode and the partial iteration spaces

show how the coiteration algorithm successively eliminates regions from the iteration space, as

the vectors 𝑎 and 𝑏 runs out of values. This iteration space is not supported by prior work and

illustrates the expressive power of omitter points. An omitter point is needed so the sparse array

compiler knows to generate code that coiterates over the vectors 𝑎 and 𝑏 while explicitly avoiding

computing and storing values when both vectors are defined.

𝑎,𝑏

𝑎 𝑏

∅

𝑏 𝑎

𝑎 𝑏

while 𝑎 and 𝑏 have coordinates left do
if in region [𝑎,𝑏] then do nothing

else if in region [𝑎] then . . .

else if in region [𝑏] then . . .

while 𝑎 has coordinates left do
if in region [𝑎] then . . .

while 𝑏 has coordinates left do
if in region [𝑏] then . . .

𝑎 𝑏

𝑎

𝑏

Fig. 15. Iteration lattice and corresponding coiteration pseudocode for xor that has the iteration algebra
(𝑎 ∪𝑏) ∩ ¬(𝑎 ∩𝑏). The treatment of the omitter point is the same when emitting while-loops. When emitting
inner-loop if-statements, we do nothing at 𝑎 ∩ 𝑏. Without the explicit skip, we may accidentally end up
performing computations inside the 𝑎 ∩ 𝑏 region. The check for inclusion in 𝑎 ∩ 𝑏 includes checks that 𝑎 and
𝑏 are not explicit fill values at the current point.

6.3 Construction
We generate lattices from an iteration algebra using a recursive traversal of the iteration algebra

shown in Algorithm 1. Our algorithm first performs two preprocessing passes over the input

iteration algebra 𝐴. The first pass uses De Morgan’s Laws to push complement operations down

the input algebra until complements are applied only to individual tensors (i.e. 𝐵 ∩𝐶 ⇒ 𝐵 ∪𝐶).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 R. Henry, O. Hsu, R. Yadav, S. Chou, K. Olukotun, S. Amarasinghe, and F. Kjolstad

Algorithm 1 Iteration Lattice Construction Algorithm

// Let L represent an iteration lattice and 𝑝 represent an iteration lattice point.

procedure BuildLattice (Algebra A)
if A is Tensor(t) then ⊲ Segment Rule

return L(𝑝([t], producer=true))

else if A is Tensor(t) then ⊲ Complement Rule

𝑝𝑜 = 𝑝([t, U], producer=false)

𝑝𝑝 = 𝑝([U], producer=true)

return L([𝑝𝑜 , 𝑝𝑝])

else if A is (left ∩ right) then ⊲ Intersection Rule

L𝑙 , L𝑟 = BuildLattice(left), BuildLattice(right)

cp = L𝑙 .points() × L𝑟 .points()

mergedPoints = [𝑝(𝑝𝑙 + 𝑝𝑟 , producer=𝑝𝑙 .producer ∧ 𝑝𝑙 .producer) : ∀(𝑝𝑙 , 𝑝𝑟) ∈ cp]

mergedPoints = RemoveDuplicates(mergedPoints, ommitterPrecedence)

return L(mergedPoints)

else if A is (left ∪ right) then ⊲ Union Rule

L𝑙 , L𝑟 = BuildLattice(left), BuildLattice(right)

cp = L𝑙 .points() × L𝑟 .points()

mergedPoints = [𝑝(𝑝𝑙 + 𝑝𝑟 , producer=𝑝𝑙 .producer ∨ 𝑝𝑙 .producer) : ∀(𝑝𝑙 , 𝑝𝑟) ∈ cp]

mergedPoints = mergedPoints + L𝑙 .points() + L𝑟 .points()

mergedPoints = RemoveDuplicates(mergedPoints, producerPrecedence)

return L(mergedPoints)

end procedure

The second pass (called augmentation) reintroduces tensors present in function arguments but

not present in the input iteration algebra, without changing its meaning. For example, consider

the function 𝑓 (𝑎, 𝑏) = 𝑎/𝑏 which has an annihilator of 0 at 𝑎. The algebra derivation procedure in

Section 5.2 tells us that the iteration algebra for 𝑓 is 𝑎 (assuming 𝑎 has fill value 0)—note that 𝑏 is

not included in the algebra even though it is an argument to 𝑓 . The augmentation pass uses the set

identity 𝐴 ∪ (𝐵 ∩ 𝐵) to reintroduce any tensor 𝐵 into the algebra. All tensors present in function

arguments but not present in the iteration algebra are brought back into the algebra in this step.

After preprocessing, our algorithm performs a recursive tree traversal matching on each set

operator (complement, union, intersection) in the iteration algebra. Unlike lattice construction in

Kjolstad et al. [2017], we introduce the Complement Rule and the handling of omitter points in the

Intersection and Union Rules. At a high level, our algorithm performs the following operations at

each set operator in the algebra:

• Segment Rule. Return a lattice with a producer point containing the input tensor.

• Complement Rule. Return a lattice that omits computation at the input tensor and performs

computation everywhere else.

• Intersection Rule. Return a lattice representing the intersection of the two input lattices.

• Union Rule. Return a lattice representing the union of the two input lattices.

In the Intersection and Union Rules, taking the cross product of points in the left and right lattices

may create duplicate points with different types. These duplicates are resolved with producer

precedence in the Union Rule, and omitter precedence in the Intersection Rule. Finally, we prune

any omitter points that dominate no producer points since they are equivalent to points missing

from the lattice. Fig. 16 visualizes our algorithm applied to the iteration algebra 𝑎 ∩ 𝑏. We first

apply the Segment Rule to 𝑎 and the Complement Rule to 𝑏, and then apply the Intersection Rule

on the resulting lattices. A similar example of the Union Rule can be found in Fig. 17.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Compilation of Sparse Array Programming Models 1:15

𝑎

∅
𝑎 ∩

𝑏,U

U

∅

𝑏

U

=

𝑎, 𝑏,U

𝑎,U

∅

𝑏

𝑎,U

Fig. 16. Intersection Rule for 𝑎∩𝑏. The 𝑎 and 𝑏 lattices
were generated using the Segment and Complement
Rules respectively.

𝑎

∅
𝑎 ∪

𝑏,U

U

∅

𝑏

U

=

𝑎, 𝑏,U

𝑎,U

∅

𝑏

𝑎,U

Fig. 17. Union Rule for 𝑎∪𝑏. The 𝑎 and 𝑏 lattices were
generated using the Segment and Complement Rules
respectively.

The presentation of Algorithm 1 is limited to the case when tensors are not repeated in the

iteration algebra expression. This is because the lattice point pairs, when being merged, are unaware

of whether or not the duplicated tensor fell out from the iteration space in the other lattice point. If

the tensor did fall out from the lattice for one point and is in the lattice point for the other, then we

end up getting that the two points represent non-overlapping iteration spaces and should not be

merged, as illustrated by Fig. 18 between the left 𝑎 tensor and right 𝑏 tensor for point pair (𝑝𝑙 , 𝑝𝑟).

We solve this by modifying the Cartesian product of points in the algorithm to a filtered Cartesian

product, which is fully described in Appendix Algorithm 2 in the supplemental materials
2
. Briefly,

the filtered Cartesian product ignores any point pairs from the Cartesian product between 𝑝𝑙 ∈ L𝑙

and 𝑝𝑟 ∈ L𝑟 that do not overlap. It determines this by checking for every tensor 𝑡 in point 𝑝𝑙 ,

whether 𝑡 exists in 𝑝𝑟 ’s root point but does not exist in point 𝑝𝑟 itself (and vice versa).

U

𝑎 𝑎, 𝑏 𝑏

𝑎, 𝑏

𝑎𝑏

∅

𝑏𝑎

𝑎𝑏

× 𝑏

∅
𝑏

U

𝑎 𝑏

Fig. 18. Iteration lattice and space of two lattices with a repeat tensor 𝑏. The (L𝑙 × L𝑟) produces a point pair:
(left point 𝑎, right point 𝑏) shown in green. When merging that pair, the two Venn diagrams show that the
left 𝑎-only region (blue) and right whole-𝑏 region (red) do not overlap.

7 GENERALIZED CODE GENERATION
In this section, we describe how the generalized iteration lattices described in Section 6 can be used

to generate code that iterates over generalized iteration spaces. We also describe optimizations that

can be performed during code generation using different properties of user-defined functions, and

we describe how code generation is performed for expressions that slice sparse tensors.

7.1 Lowering Generalized Iteration Lattices
Our technique for code generation draws on the code generation technique that TACO uses, as

described in [Kjølstad 2020]. The main difference is how iteration lattices are lowered into code,

since there are now types associated with each lattice point.

Like TACO, our technique first lowers an array index notation expression into concrete index
notation, which explicitly denotes the forall loops over index variables. For example, the array

index notation expression xor(𝐴𝑖 𝑗 , 𝐵𝑖 𝑗) corresponds to the concrete index notation expression

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 R. Henry, O. Hsu, R. Yadav, S. Chou, K. Olukotun, S. Amarasinghe, and F. Kjolstad

∀𝑖∀𝑗 xor(𝐴𝑖 𝑗 , 𝐵𝑖 𝑗). The code generation algorithm walks through the forall statements in the

concrete index notation expression. At each ∀𝑖 𝑆 statement, our technique constructs an iteration

lattice L from 𝑆 and 𝑖 . Then, at each lattice point 𝑝 ∈ L, our technique generates a loop that

coiterates over all tensors in 𝑝 . Next, for each point 𝑝 ′
such that 𝑝 ′ ≤ 𝑝 , our technique emits an

if-statement whether to enter that case and recursively invokes the code generation procedure

on a statement 𝑆 ′ formed by removing tensors from 𝑆 not in 𝑝 ′
. In our technique, when 𝑝 ′

is a

producer point, a compute statement is emitted since producer points correspond to regular points

in standard iteration lattices. This entails inlining user-defined function implementations within

the case; if the function has multiple implementations (like in Fig. 5), our technique chooses an

optimized implementation based on what tensors are present in 𝑝 ′
.

When 𝑝 ′
is an omitter point, it must be handled differently, as 𝑝 ′

represents computation that

must not occur. When considering the statement 𝑆 ′ constructed from 𝑝 ′
, our technique emits

nothing in order to skip computation at 𝑆 ′, as long as 𝑆 ′ has no foralls (i.e., it can access tensor

values directly). To see why computation cannot always be skipped at omitter points, again consider

the expression∀𝑖∀𝑗 xor(𝐴𝑖 𝑗 , 𝐵𝑖 𝑗). As discussed previously, the iteration lattice for xor has an omitter

point at 𝐴, 𝐵. When lowering the loop over 𝑖 , omitting computation at the point where 𝐴 and 𝐵

have equal 𝑖 coordinates would be incorrect, since computation must be omitted at coordinates

that have equal values for both 𝑖 and 𝑗 . Finally, when omitting computation, our technique also

emits code to check that the tensors do not have explicit fill values at the considered coordinates.

7.2 Reduction Optimizations
When generating code for reductions, our technique can take advantage of properties of the

reduction function to emit code that avoids iterating over entire dimensions or that breaks out of

reduction loops early. In particular, our technique can perform the following optimizations based

on the identity and annihilator properties of the reduction function 𝑓 :

• Identity 𝑖. If the (inferred) fill value of the tensor expression being reduced over is equal to 𝑖 ,

then we can iterate over only the defined values of the tensor mode, rather than the entire

dimension. This optimization corresponds to the standard optimization used by TACO when

reducing over addition in the addition-multiplication (+,×) semiring.

• Annihilator 𝛼 . If target reduction is being performed into a scalar value, then we can

insert code to break out of the reduction if the reduction value ever equals 𝛼 . The loop

ordering is important to apply this optimization. Consider the array index notation expression

𝐵𝑖 𝑗 = reduction𝑘 (𝐴𝑖 𝑗𝑘). If the loops are ordered as 𝑖 → 𝑗 → 𝑘 then this optimization could

be applied, because for each 𝑖 and 𝑗 , 𝑘 is reduced into 𝐵𝑖 𝑗 . If the loops were instead ordered

𝑖 → 𝑘 → 𝑗 then this optimization could not be performed, since attempting to break out of

the reduction could skip unrelated iterations of the 𝑗 loop.

7.3 Slicing
This section describes how slicing operations like windowing and striding can be compiled into

an expression from array index notation. The intuition for our approach comes from examining

slicing operations in dense array programming libraries like NumPy. In NumPy, taking a slice of a

dense array is a constant time operation, where an alias to the underlying dense array is recorded,

along with a new start and end location. Operations on the sliced array use those recorded bounds

when iterating over the array, and offset the coordinates by the bounds of the slice. Rather than

viewing a slice as an extraction of a component, we can view it as an iteration space transformation

that restricts the iteration space to within that slice, then projects the iteration space down to a

canonical iteration space, where each dimension ranges from zero to the size of the slice.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Compilation of Sparse Array Programming Models 1:17

// Limit outer loop to the slice 1:5:2.

for (int i = 0; i < 2; i++) {

// Project access to A into the slice.

int iA = (i * 2) + 1;

int jA_s = A2_pos[iA];

int jA_e = A2_pos[(iA + 1)];

// Seek the start of the slice 2:6:2.

jA_s = bSearch(A2_crd, jA_s, jA_e, 2);

// Iterate from the start of the slice.

for (int jA = jA_s; jA < jA_e; jA++) {

// Check that coordinate is aligned

// to the stride 2:6:2.

if ((A2_crd[jA] - 2) % 2 != 0)

continue;

// Project coordinate into canonical

// iteration space of 2:6:2.

int j = (A2_crd[jA] - 2) / 2;

// Break if coord is outside slice.

if (j >= 2)

break;

int jB = i * 2 + j;

B_vals[jB] = A_vals[jA]; }}

Fig. 19. Generated kernel for 𝐵𝑖 𝑗 =

𝐴𝑖 (1:5:2) 𝑗 (2:6:2) demonstrating array slicing.
Red indicates slicing-related code.

Using this intuition, we can view operating on a slice of

a tensor dimension, or tensor mode, as restricting the iter-

ation space over that mode to some set 𝑆 which contains

all coordinates in the desired slice. This corresponds to

intersecting the iteration lattice for the sliced modes with

𝑆 . However, when 𝑆 is a set that has a restricted shape

(like for a rectangular slice), the intersection with 𝑆 can be

compiled directly into the tensor expression. This special-

ization is directed by capabilities of the data structured

storing the sliced tensor mode, which provide informa-

tion about what operations the mode supports [Chou

et al. 2018]. We describe how to specialize slicing oper-

ations for dense tensor modes that support the capability

to efficiently locate (i.e., random access) into arbitrary po-

sitions, and for compressed modes that support the ability

to iterate over defined elements of the tensor. We include

generated code for the array index notation expression

𝐵𝑖 𝑗 = 𝐴𝑖 (1:5:2) 𝑗 (2:6:2) in Figure 19 to visualize the effect of

slicing on the kernel. In the example, 𝐴 is a CSR format

two-dimensional array and 𝐵 is a dense two-dimensional

array.

For modes that support efficient locate, our technique

supports slicing in a way that is similar to how dense

array programming libraries slice arrays. In particular,

our technique emits code that operates entirely on the

canonical iteration space, and projects accesses to the tensor into the slice’s iteration space. For a

slice lo:hi:st, dense for-loops over the sliced mode range from 0 to (hi - lo) / st instead of

0 to dim. Then, whenever a value i is used to access the sliced tensor mode, it is projected from the

canonical iteration space into the slice by replacing i with (i * st) + lo.
Slicing modes that only support efficient iteration is the inverse of how slicing is performed for

modes with efficient locate. Since it is not possible to efficiently access only the positions within

the slice, our technique generates code that instead iterates over the coordinates in the mode and

project these coordinates into the canonical iteration space. When iterating over a tensor mode

with a slice lo:hi:st, the generated code must restrict the iteration to coordinates between lo
and hi. It does this by seeking and skipping to the first coordinate greater than or equal to lo, and
then breaking out of iteration at the first coordinate greater than or or equal to hi. To restrict the

iteration space along with the desired stride st, our technique must also emit code that ensures

any coordinate c read from the tensor aligns with the st by skipping coordinates where (c - lo)
% st != 0. Finally, our technique emits code that projects a coordinate c read from iteration into

the canonical iteration space by setting c equal to (c - lo) / st. At this point, the remaining

steps for code generation can proceed as before, as the resulting coordinates are all within the slice

and mapped to the canonical iteration space of the slice.

8 EVALUATION
We evaluate our sparse array programming compiler by comparing to the PyData/Sparse library,

which is the only general sparse array language implementation known to us. We also compare

to the less general SciPy/Sparse and GraphBLAS libraries, which consist of hand-implemented

functions, to demonstrate our performance against hand-optimized code. Finally, we implement

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 R. Henry, O. Hsu, R. Yadav, S. Chou, K. Olukotun, S. Amarasinghe, and F. Kjolstad

a medical imaging edge detection algorithm and the Minimax algorithm from game theory to

demonstrate the applicability of our system. We restrict our evaluation to multi-core CPUs, as our

implementation does not yet support GPUs.

8.1 Methodology
All experiments are run on a dual-socket, 12-core Intel Xeon E5-2680 v3 machine @ 2.5 GHz with 30

MB of L3 cache and 128 GB of main memory. The machine runs Ubuntu 18.04.3 LTS. Our system and

generated kernels are compiled with GCC 7.5.0. Python 3.6.9 is used to run all Python code. In our

evaluation, we compare against PyData/Sparse [Abbasi 2018] version 0.11.2, SciPy [Virtanen et al.

2020] version 1.5.4, NumPy [Harris et al. 2020] version 1.19.5, and SuiteSparse:GraphBLAS [Davis

2019] version 4.0.3. We disable hyperthreading and use numactl to restrict execution to a single

socket. All execution times, except in Section 8.3, are compared over an average of 10 executions.

8.2 Comparison to Sparse Array Programming Libraries
In the Python ecosystem, programmers have two main options for operating on sparse matrices or

arrays: SciPy/Sparse and PyData/Sparse. SciPy/Sparse is a SciPy package for working with sparse

matrices. It contains some common sparse matrix formats along with hand-written C implementa-

tions for many operations, but is limited in the scope of array programming features supported.

For additions and multiplications, our system generates the exact same code as the TACO sys-

tem [Kjolstad et al. 2017], which performs competitively with the hand-optimized implementations

like those in SciPy [Chou et al. 2018].

PyData/Sparse is a recent project that supports tensors of arbitrary dimensions in the COO

format. Like the NumPy library for dense array processing, it also supports general user-defined

functions. The PyData/Sparse implementation utilizes existing NumPy and SciPy/Sparse dense

kernels by first transforming and transposing the data into shapes that NumPy and SciPy/Sparse

can operate on. Then, the PyData/Sparse algorithm will transform the results back into COO format.

While the kernels used by PyData/Sparse are heavily optimized, its data transformation-based

approach adds additional data movement overhead. By contrast, our techniques for sparse array

programming can generate optimized kernels that operate on tensors of any dimension and data

format, without performing unnecessary data movement.

Table 2. FROSTT tensors used in our evaluation

Tensor name Non-zeros Order Shape

nips 3,101,609 4 2,482 x 2,862 x 14,036 x 17

uber-pickups 3,309,490 4 183 x 24 x 1,140 x 1,717

chicago-crime 5,330,673 4 6,186 x 24 x 77 x 32

vast 26,021,945 5 165,427 x 11,374 x 2 x 100 x 89

enron 54,202,099 4 6,066 x 5,699 x 244,268 x 1,176

nell-2 76,879,419 3 12,092 x 9,184 x 28,818

8.2.1 BinaryOperations. Wedemon-

strate the flexibility and per-

formance of our techniques by

implementing a subset of the

NumPy element-wise universal

functions (ufuncs) that have it-

eration spaces different from in-

tersection and union. We eval-

uate the logical_xor, ldexp,
right_shift and power ufuncs,
which have the iteration spaces

shown in Fig. 20. SciPy/Sparse does not support most ufuncs outside of addition and multiplication

and NumPy implementations cannot materialize the tensors into a dense format, so we restrict our

comparison to PyData/Sparse.

We evaluate the above ufuncs on the subset of real-valued tensors from the FROSTT tensor

repository [Smith et al. 2017] and SuiteSparse sparse matrix repository [Davis and Hu 2011] that

PyData/Sparse could successfully load without memory issues. Characteristics about the FROSTT

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Compilation of Sparse Array Programming Models 1:19

U
𝐴 𝐵

(a) logical_xor(A, B)

U
𝐴 𝐵

(b) ldexp(A, B)

U
𝐴 𝐵

(c) right_shift(A, B)

U
𝐴 𝐵

(d) power(A, B), fill = 1

Fig. 20. Iteration spaces of the benchmarked ufuncs.

S
pe

ed
up

 o
f O

ur
 S

ys
te

m

ov
er

 P
yD

at
a/

S
pa

rs
e

Fig. 21. Speedup of our system over PyData/Sparse
on a log scale for ufunc operations on FROSTT tensors.

<latexit sha1_base64="bKm90IGleov9JlJJzagj2BvmDQE=">AAAB/HicbVDLSgNBEJz1GeNrNUcvi0GIIGFXRD3GePEYwTwgWcLspDcZMvtgplcNS/wVLx4U8eqHePNvnCR70MSChqKqm+4uLxZcoW1/G0vLK6tr67mN/ObW9s6uubffUFEiGdRZJCLZ8qgCwUOoI0cBrVgCDTwBTW94PfGb9yAVj8I7HMXgBrQfcp8zilrqmoUOwiMipnH0ALJ0dVI9HnfNol22p7AWiZORIslQ65pfnV7EkgBCZIIq1XbsGN2USuRMwDjfSRTElA1pH9qahjQA5abT48fWkVZ6lh9JXSFaU/X3REoDpUaBpzsDigM1703E/7x2gv6lm/IwThBCNlvkJ8LCyJokYfW4BIZipAllkutbLTagkjLUeeV1CM78y4ukcVp2zsvO7VmxUs3iyJEDckhKxCEXpEJuSI3UCSMj8kxeyZvxZLwY78bHrHXJyGYK5A+Mzx9tKpSd</latexit>

power(A,B)
<latexit sha1_base64="JSnNwUj4HRb3TT5Fq9s6zvmpz2Q=">AAACBHicbVDLSsNAFJ34rPUVddnNYBEqSElE1GWtG5cV7AOaECbTSTt08mDmRiyhCzf+ihsXirj1I9z5N07bLLT1wIXDOfdy7z1+IrgCy/o2lpZXVtfWCxvFza3tnV1zb7+l4lRS1qSxiGXHJ4oJHrEmcBCsk0hGQl+wtj+8nvjteyYVj6M7GCXMDUk/4gGnBLTkmSUH2AMAZJL3B+B4asADqFyd4Prx2DPLVtWaAi8SOydllKPhmV9OL6ZpyCKggijVta0E3IxI4FSwcdFJFUsIHZI+62oakZApN5s+McZHWunhIJa6IsBT9fdERkKlRqGvO0MCAzXvTcT/vG4KwaWb8ShJgUV0tihIBYYYTxLBPS4ZBTHShFDJ9a2YDogkFHRuRR2CPf/yImmdVu3zqn17Vq7V8zgKqIQOUQXZ6ALV0A1qoCai6BE9o1f0ZjwZL8a78TFrXTLymQP0B8bnD0tOl9c=</latexit>

right shift(A, B)

Number of Defined Values

PyD
ata

/Spars
e

Our S
yst

em

<latexit sha1_base64="YJL89yKO6EgXggZ0v1m/WPqakYg=">AAACBHicbVA9SwNBEN2LXzF+nVqmWQxCBAl3ImoZY2MZwXxAEsLeZi9Zsnd77M5JwpHCxr9iY6GIrT/Czn/jJrlCEx8MPN6bYWaeFwmuwXG+rczK6tr6RnYzt7W9s7tn7x/UtYwVZTUqhVRNj2gmeMhqwEGwZqQYCTzBGt7wZuo3HpjSXIb3MI5YJyD9kPucEjBS1863gY0AIBGyb0TR7o6kKl6f4srJpGsXnJIzA14mbkoKKEW1a3+1e5LGAQuBCqJ1y3Ui6CREAaeCTXLtWLOI0CHps5ahIQmY7iSzJyb42Cg97EtlKgQ8U39PJCTQehx4pjMgMNCL3lT8z2vF4F91Eh5GMbCQzhf5scAg8TQR3OOKURBjQwhV3NyK6YAoQsHkljMhuIsvL5P6Wcm9KLl354VyJY0ji/LoCBWRiy5RGd2iKqohih7RM3pFb9aT9WK9Wx/z1oyVzhyiP7A+fwA+kJfP</latexit>

logical xor(A, B)

Ru
nt

im
e

(s
)

1E+1

1E-1

1E-3

1E+71E+1 1E+3 1E+5

1E+71E+1 1E+3 1E+5

1E+71E+1 1E+3 1E+5

PyD
ata

/Spars
e

Our System

PyD
ata

/Spars
e

Our S
yst

em

<latexit sha1_base64="bldTuPWZ/SgqT5QxHtvbbnnvQrc=">AAAB/HicbVDLSgNBEJz1GeNrNUcvi0GIIGFXRD3GePEYwTwgCWF20psMmX0w0ytZlvgrXjwo4tUP8ebfOEn2oIkFDUVVN91dbiS4Qtv+NlZW19Y3NnNb+e2d3b198+CwocJYMqizUISy5VIFggdQR44CWpEE6rsCmu7oduo3H0EqHgYPmETQ9ekg4B5nFLXUMwsdhDEipqIP46h0c1Y9nfTMol22Z7CWiZORIslQ65lfnX7IYh8CZIIq1XbsCLsplciZgEm+EyuIKBvRAbQ1DagPqpvOjp9YJ1rpW14odQVozdTfEyn1lUp8V3f6FIdq0ZuK/3ntGL3rbsqDKEYI2HyRFwsLQ2uahNXnEhiKRBPKJNe3WmxIJWWo88rrEJzFl5dJ47zsXJad+4tipZrFkSNH5JiUiEOuSIXckRqpE0YS8kxeyZvxZLwY78bHvHXFyGYK5A+Mzx9USJSN</latexit>

ldexp(A,B)

1E+2

1E+1

1E+0

1E-1

1E-2

1E-3

1E+2

1E+1

1E+0

1E-1

1E-2

1E-3

1E+2

1E+1

1E+0

1E-1

1E-2

1E-3

1E+71E+1 1E+3 1E+5

Our S
yst

emPyD
ata

/Spars
e

Fig. 22. Ufunc operations on SuiteSparse tensors using a log-log scale.

tensors satisfying these constraints can be found in Table 2. The tensors in these datasets were

used as the first argument to the ufunc. We constructed synthetic inputs for the second argument

by shifting the coordinates in the last tensor mode from the first argument by one position and

setting the data to a constant value. Finally, since some ufuncs are sensitive to the particular value

in the operand tensor (such as ldexp), we filled the shifted tensor with a small constant value of 2.

Both PyData/Sparse and our system use a single thread for these kernels.

We show the normalized execution times of PyData/Sparse’s ufunc operations on the FROSTT

tensors in Fig. 21 and the execution times of our system and PyData/Sparse on the SuiteSparse

matrices in Fig. 22. The geometric mean speedup of our system is 7.55× on the FROSTT tensors

and 4.24× on the SuiteSparse matrices. The PyData/Sparse’s data-movement heavy approach to

sparse array programming is much slower than our approach on all inputs, which iterates directly

through the sparse data structures for the exact iteration pattern of the target ufunc.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 R. Henry, O. Hsu, R. Yadav, S. Chou, K. Olukotun, S. Amarasinghe, and F. Kjolstad

U
𝐴 𝐵

𝐶

(a) and(xor(A, B), C)

U
𝐴 𝐵

𝐶

(b) or(xor(A, B), C)

U
𝐴 𝐵

𝐶

(c) xor(xor(A, B), C)

Fig. 24. Iteration spaces of fused ufunc benchmarks.

S
pe

ed
up

 o
f O

ur
 S

ys
te

m

ov
er

 P
yD

at
a/

S
pa

rs
e

Fig. 25. Log-scale speedup of our system over Py-
Data/Sparse for fused ufunc operations on FROSTT
tensors.

8.2.2 Fusing Operations. Our approach for sparse array programming can also fuse different

functions together, which avoids doing work that is then discarded. Our technique only iterates

over the spaces where defined values are produced, which avoids materializing temporaries. We

evaluate the fused kernels described in Fig. 24, which are constructed with the logical_xor,
logical_and, and logical_or ufuncs. We use the FROSTT tensors described in Section 8.2.1 as

inputs to the fused functions, with the third tensor argument created by the same shifting operation

described previously. We report normalized execution times of fused operations in PyData/Sparse

against our system in Fig. 25. By fusing operations, our system iterates over less data and avoids

allocation of intermediate results. By contrast, PyData/Sparse’s allocation of an intermediate and

extra pass over the data cause it to have an even larger slowdown than for a single ufunc application.

Ru
nt

im
e

(s
)

Number of Defined Values
5E+6 1E+7 1.5E+70

Fig. 23. Scaling of fused and/xor oper-
ation on random tensors.

Fusing functions can decrease the amount of work realized

in the final output tensor. For example, consider the fused

and and xor kernel described in Fig. 24. Without fusing, first

xor(A, B)must be computed, and then the result must be and-
ed with C. Since the annihilator of and is false, all coordinates
in the iteration space of xor that are not present in C will be
false in the final result. If the and and xor functions are fused,
then the generated code avoids computing any values for

false coordinates in C in the first place. To demonstrate this

effect, we compare the fused and–xor kernel of PyData/Sparse
to our system on a set of square matrices of increasing size

where each matrix has a uniformly random sparsity of 1%. We plot the execution time of both

systems against the number of defined values in the matrix in Fig. 23. Our system is already

generally faster then PyData/Sparse, but our system’s execution time still grows at a slower rate

because it can avoid doing operations that are later ignored through fusing.

8.2.3 Memory Usage. We present memory usage results between our system and PyData/Sparse

on individual and fused ufunc operations on each of the considered FROSTT tensors. To measure

the memory used for our system, we count the size of allocations performed to hold input and

output data structures. Since our approach does not allocate any temporary data structures, this is

all of the memory used by our system. To measure the memory used by PyData/Sparse, we use

the Python package memory_profiler, which records a line-by-line profile of the total memory

allocated/released by each line of a Python program.

We present the memory usage results in Figure 26, which groups the memory used data by each

considered tensor in the FROSTT dataset. On average, we find that PyData/Sparse uses an average

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Compilation of Sparse Array Programming Models 1:21

Our SystemPyData/Sparse

M
em

or
y

U
sa

ge
 (G

B)

Fig. 26. Memory usage (in GB) of our system versus PyData/Sparse on FROSTT tensors. The experiments are
run for both the ufunc and fused operations, which is differentiated by a vertical dashed line.

S
pe

ed
up

 o
f O

ur
 S

ys
te

m
ov

er
 P

yD
at

a/
S

pa
rs

e Constant Window Size Almost Whole Window SizeConstant Fraction Window Size

Fig. 27. Various window size slicing operations across different square matrix sizes, parameterized by sparsity
and plotted on a log-scale.

of 6.55x more memory than our system to perform these ufunc operations. PyData/Sparse uses

a similar amount of memory as our system to store the input and output tensors, but is unable

to compress as much of these tensors since they are stored in a coordinate list format. Much of

the measured space overhead of PyData/Sparse comes from large amount of intermediate storage

allocated during execution of the ufunc operation, which is often more than twice the space used

to store the input tensors themselves.

8.2.4 Slicing. To evaluate the performance of code that our technique generates to perform slicing

and striding, we perform an element-wise addition between uniformly random square sparse

matrices with varying sparsities that have been sliced in different ways. We choose a simple kernel

and input tensors to highlight the costs of data movement caused by slicing operations. We consider

square slices of a constant 500×500 size, a constant fraction (1/4) of the matrices’ rows, and slices

that contain the entire matrix except for the first and last rows. We separately consider slices of the

whole matrix with strides of widths 2, 4, and 8. Execution times normalized against our system for

slicing and striding can be found in Figs. 27 and 28. We exclude results from PyData/Sparse in these

figures as it was consistently an order of magnitude slower than both our system and SciPy/Sparse.

The geometric mean speedup of our system over SciPy/Sparse is 2.25× on the slicing benchmarks

and 1.47× on the striding benchmarks. These speedups come from the implementation strategy of

SciPy/Sparse and PyData/Sparse. In particular, SciPy/Sparse and PyData/Sparse implement slicing

by first deep copying and repacking elements into a new sparse array, and then performing the

desired computation. This deep copying and repacking step incurs extra cost compared to our

approach, which operates directly on the slice.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 R. Henry, O. Hsu, R. Yadav, S. Chou, K. Olukotun, S. Amarasinghe, and F. Kjolstad

Stride Width of 2 Stride Width of 4 Stride Width of 8

S
pe

ed
up

 o
f O

ur
 S

ys
te

m
ov

er
 P

yD
at

a/
S

pa
rs

e

Fig. 28. Various stride length slicing operations across different square matrix sizes, parameterized by sparsity
and plotted on a log-scale.

8.3 GraphBLAS Kernels
Many graph algorithms, such as those for performing breadth-first search and for solving the

all-pairs shortest paths problem, can be expressed using linear algebra (with semirings beyond the

standard (+,×) semiring) [Kepner and Gilbert 2011]. For instance, each iteration of breadth-first

search on a graph can be expressed as the multiplication of the graph’s adjacency matrix by a

vector that represents the current frontier, which returns a new vector that represents the next set

of vertices to be visited. Kepner et al. [2016] show how GraphBLAS, an API that exposes a fixed

set of common linear algebra primitives like matrix-vector multiplication (mxv) and matrix-matrix

multiplication (mxm), can be used to implement efficient graph applications.

Our technique can generate efficient code for many of the core primitives in GraphBLAS. To

demonstrate this, we use our technique to generate code that implement mxv

𝑦𝑖 = mask(¬𝑚𝑖 ,
⊕

𝑗

(𝐴𝑖 𝑗 ⊗ 𝑥 𝑗))

and mxm (𝐴𝑖 𝑗 =
⊕

𝑘 (𝐵𝑖𝑘 ⊗ 𝐶𝑘 𝑗)) for both Boolean and tropical semirings. (The tropical semiring

replaces ⊕ with min and ⊗ with +, while the Boolean semiring assumes that all values are Boolean

and replaces ⊕ with ∨ and ⊗ with ∧. mask returns the value of the second argument only if the first

argument evaluates to true.) We then measure the performance of the generated code (running with

12 threads) and compare it against that of SuiteSparse:GraphBLAS [Davis 2019], a highly-optimized

implementation of GraphBLAS. We report average execution times over 1000 iterations for mxv
and over 100 iterations for mxm.

Tables 3 and 4 show the results of our experiment. For mxv, our system is on average 1.26× faster

than SuiteSparse:GraphBLAS (i.e., SuiteSparse) when computing with the Boolean semiring and

1.13× faster when computing with the tropical semiring. This is because our technique generates

code that uses the same algorithm as SuiteSparse but is fully specialized to the input’s types and

formats. By contrast, SuiteSparse, though partially specialized using C macros, still has to perform

some dynamic dispatching to handle inputs of arbitrary types and formats, which adds run-time

overhead. For mxm, our technique is on average 1.02× faster than SuiteSparse when computing

with the Boolean semiring and has performance 0.836× that of SuiteSparse when computing with

the tropical semiring. Our generated code and SuiteSparse both use a linear combination of rows

algorithm to compute the kernel. However, when the output matrix has relatively few defined

values per row, SuiteSparse is able to use hash tables to store partial results. By contrast, our

technique currently can only generate code that stores partial results using dense arrays, thus

reducing cache efficiency. Table 4 also shows, though, that code our technique emits has similar or

better performance on average than SuiteSparse when the latter also uses dense arrays to store

partial results (which is preferable when the output is relatively dense).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Compilation of Sparse Array Programming Models 1:23

Table 3. Performance of (complement-masked) matrix-vector multiplication (mxv) kernels, generated by our
sparse array compiler and implemented in SuiteSparse:GraphBLAS, on varying SuiteSparse matrices. Relative
and absolute execution times (in parentheses) are shown, with the faster implementation highlighted in gray.
We use input vectors that are 25% dense and mask vectors with 25% of elements being false. All matrices are
stored in CSR, while mask vectors are stored using dense arrays and other vectors are stored using byte maps.
Our technique generates code that is competitive with SuiteSparse:GraphBLAS in terms of performance,
with the generated code being 1.13–1.26× as fast as hand-optimized code on average.

Matrix

Boolean Semiring Tropical Semiring

SuiteSparse Our System SuiteSparse Our System

belgium_osm 1× (1.62 ms) 1.38× (1.17 ms) 1× (2.33 ms) 1.05× (2.22 ms)

cit-Patents 1× (8.08 ms) 1.33× (6.06 ms) 1× (17.3 ms) 1.19× (14.6 ms)

coAuthorsCiteseer 1× (0.336 ms) 1.80× (0.186 ms) 1× (0.561 ms) 1.35× (0.417 ms)

coPapersDBLP 1× (1.76 ms) 1.77× (0.993 ms) 1× (9.19 ms) 1.18× (7.79 ms)

delaunay_n24 1× (27.2 ms) 0.768× (35.5 ms) 1× (68.4 ms) 0.98× (69.7 ms)

indochina-2004 1× (17.8 ms) 1.22× (14.7 ms) 1× (46.3 ms) 0.967× (47.9 ms)

rgg_n_2_24_s0 1× (47.6 ms) 0.941× (50.6 ms) 1× (138 ms) 1.18× (116 ms)

road_central 1× (25.5 ms) 1.04× (24.4 ms) 1× (52.8 ms) 1.01× (52.1 ms)

road_usa 1× (31.6 ms) 0.889× (35.6 ms) 1× (73 ms) 0.957× (76.2 ms)

roadNet-CA 1× (2.17 ms) 1.35× (1.61 ms) 1× (5.5 ms) 1.54× (3.57 ms)

ship_003 1× (0.214 ms) 2.00× (0.107 ms) 1× (1.04 ms) 1.11× (0.93 ms)

soc-LiveJournal1 1× (15.2 ms) 1.25× (12.2 ms) 1× (46.3 ms) 1.12× (41.3 ms)

Geometric mean 1× 1.26× 1× 1.13×

Table 4. Performance of matrix-matrix multiplication (mxm) kernels, generated by our sparse array compiler and
implemented in SuiteSparse:GraphBLAS, on varying SuiteSparse matrices. Relative and absolute execution
times (in parentheses) are shown, with the fastest implementation highlighted in gray. All matrices are
stored in CSR, and we use each matrix as both inputs to the kernel. For SuiteSparse:GraphBLAS, we report
results for whichever algorithm the library chooses (Any) as well as for their implementation of Gustavson’s
algorithm, which uses dense arrays to store partial results. Again, on the whole, our technique generates code
that is competitive with SuiteSparse:GraphBLAS in terms of performance, with the generated code being
0.836–1.02× as fast as hand-optimized code on average.

Matrix

Boolean Semiring Tropical Semiring

SuiteSparse

(Any)

Our System

SuiteSparse

(Gustavson’s)

SuiteSparse

(Any)

Our System

SuiteSparse

(Gustavson’s)

belgium_osm 1× (0.032 s) 0.896× (0.036 s) 0.256× (0.125 s) 1× (0.040 s) 0.599× (0.067 s) 0.243× (0.166 s)

cit-Patents 1× (0.655 s) 0.804× (0.815 s) 0.506× (1.30 s) 1× (0.816 s) 0.577× (1.41 s) 0.451× (1.81 s)

coAuthorsCiteseer 1× (0.077 s) 1.40× (0.055 s) 1.02× (0.076 s) 1× (0.118 s) 1.14× (0.104 s) 0.921× (0.128 s)

coPapersDBLP 1× (2.48 s) 1.12× (2.2 s) 1.00× (2.48 s) 1× (4.27 s) 0.946× (4.51 s) 1.00× (4.27 s)

delaunay_n24 1× (1.99 s) 1.05× (1.90 s) 0.966× (2.06 s) 1× (2.49 s) 0.955× (2.61 s) 0.938× (2.65 s)

indochina-2004 1× (120 s) 0.997× (121 s) 1.00× (120 s) 1× (207 s) 0.748× (276 s) 0.999× (207 s)

rgg_n_2_24_s0 1× (7.77 s) 1.23× (6.34 s) 1.21× (6.44 s) 1× (10.8 s) 1.13× (9.59 s) 1.12× (9.69 s)

road_central 1× (0.941 s) 0.852× (1.1 s) 0.66× (1.43 s) 1× (1.11 s) 0.661× (1.68 s) 0.627× (1.77 s)

road_usa 1× (0.777 s) 0.689× (1.13 s) 0.698× (1.11 s) 1× (0.966 s) 0.558× (1.73 s) 0.681× (1.42 s)

roadNet-CA 1× (0.064 s) 0.836× (0.077 s) 0.837× (0.076 s) 1× (0.083 s) 0.687× (0.121 s) 0.832× (0.1 s)

ship_003 1× (0.14 s) 1.28× (0.109 s) 1.22× (0.116 s) 1× (0.236 s) 1.31× (0.18 s) 1.19× (0.198 s)

soc-LiveJournal1 1× (22.6 s) 1.32× (17.2 s) 1.18× (19.1 s) 1× (42.4 s) 1.17× (36.1 s) 1.10× (38.7 s)

Geometric mean 1× 1.02× 0.815× 1× 0.836× 0.778×

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 R. Henry, O. Hsu, R. Yadav, S. Chou, K. Olukotun, S. Amarasinghe, and F. Kjolstad

Sparsity of (%)
<latexit sha1_base64="4oAjB8gf6vhWq7CokB/w5fjrf9U=">AAAB+XicbVBNS8NAEN34WetX1KOXxSJ4KomIeix60VsF+wFtCJvttl26uwm7k2IJ+SdePCji1X/izX/jts1BWx8MPN6bYWZelAhuwPO+nZXVtfWNzdJWeXtnd2/fPThsmjjVlDVoLGLdjohhgivWAA6CtRPNiIwEa0Wj26nfGjNteKweYZKwQJKB4n1OCVgpdN0usCfI7uUgDzMI/Tx0K17VmwEvE78gFVSgHrpf3V5MU8kUUEGM6fheAkFGNHAqWF7upoYlhI7IgHUsVUQyE2Szy3N8apUe7sfalgI8U39PZEQaM5GR7ZQEhmbRm4r/eZ0U+tdBxlWSAlN0vqifCgwxnsaAe1wzCmJiCaGa21sxHRJNKNiwyjYEf/HlZdI8r/qXVf/holK7KeIooWN0gs6Qj65QDd2hOmogisboGb2iNydzXpx352PeuuIUM0foD5zPH/rck+I=</latexit>

Imgt1 Number of Elements in Image

N
or

m
al

ize
d

Ru
nt

im
e

Re
la

tiv
e

to
 F

as
te

st
 R

un
tim

e

Fig. 29. Medical imaging edge detection performance normalized by the fastest runtime point on a log-log
scale plotted with respect to Img𝑡1 sparsity (left) and number of image pixels (right). The normalized runtime
value of 1 corresponds to an absolute runtime of 244.7 𝜇s

8.4 Applications
To demonstrate the usefulness of our system, we used it to implement two algorithms: an edge

detection algorithm from medical imaging and the MinMax algorithm for game decision making.

We compare our system to implementations using NumPy and PyData/Sparse.

8.4.1 Medical Imaging Edge Detection. Image processing and computer vision approaches often use

array programming. More specifically, the medical imaging field applies these processing techniques

to patient images from various imaging modalities. Oftentimes, after initial measurements are

taken, the measurements are post-processed for digital enhancement, diagnostic purposes, and even

to create domain specific machine learning models. Many systems and libraries exist for (grayscale)

medical image analysis that include functions like logical and, xor, or, and not [Huang et al. 2006;

Kim et al. 2000; Wollny et al. 2013]. We implement boundary edge detection on magnetic resonance

imaging (MRI) images [Somkantha et al. 2011] to demonstrate the practical application of our

sparse array programming system. We implement a computer vision thresholding technique to

determine the edges of an MRI image, which are then filtered using a region-of-interest (ROI) mask

(see Appendix Fig. 33 in the supplemental materials
2
). The masked edge detection is represented by

the equation Img𝑝𝑜𝑠𝑡 = (Img𝑡2
∧ ROI) ⊕ (Img𝑡1

∧ ROI), where Img is the original two-dimensional

single-channel MRI image and Img𝑡1
and Img𝑡2

are thresholded versions of Img using 𝑡1 = 75% and

𝑡2 = 80% respectively.

We compare the average execution time of the masked edge detection on MRI brain images from

a dataset on Kaggle [Chakrabarty 2019]; an example image can be found in Appendix Fig. 33 in the

supplemental materials
2
. Our sparse array compiler has a geometric mean speedup of 2.69× (0.96×

to 28.9×) faster than the dense NumPy implementation and 9.41× (6.58× to 17.9×) faster than the

PyData/Sparse implementation, as shown in Fig. 29. We also demonstrate the benefits of sparsity

since the dense implementation scales linearly with the number of image pixels.

8.4.2 Game Playing Minimax Algorithm. In game theory, game choices are often represented as a

decision tree where each node represents a potential state in the game and each edge represents a

move decision, with leaf-node values representing a heuristic of that game state (see Fig. 31). In

addition to interpreting sparse arrays as images (Section 8.4.1) or graphs (Section 8.3), we can use

sparse arrays to represent tree-like structures. Artificial intelligence algorithms, like the Minimax

algorithm, are often used on these game-state decision trees to calculate the optimal move given a

starting game position and assuming that the opponent will also choose their moves optimally. Our

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Compilation of Sparse Array Programming Models 1:25

S
pe

ed
up

 o
f O

ur
 S

ys
te

m
ov

er
 P

yD
at

a/
S

pa
rs

e

Tensor Order
3 5 7

Fig. 30. Minimax speedup
plotted on a log-scale

3

3

3

-2 3

6

5 6

0

0

0 -4

8

7 8

(a) Example game decision tree

3 6

-4 8
-2 5

0 7

max

min

m
a
x

3 6

0 8

min

m
a
x

3

0

m
a
x

3

(b) Higher-order tensor representation

Fig. 31. Simple Minimax Algorithm Example

system can represent the Minimax algorithm, which alternates taking the minimum and maximum

value at each level of the game tree, as: opt = max

𝑖
min

𝑗
max

𝑘
. . . (𝐴𝑖 𝑗𝑘...).

We implement this algorithm on our system and compare against PyData/Sparse for higher-

order tensors. We cannot compare against NumPy since the tensors are too large for a dense

representation, and we cannot compare against SciPy/Sparse since these tensors have greater than

two dimensions. We test this for tensor orders 𝑜 = 3, 5, 7, where the dimensions are 20× 20× 43
(𝑜−2)

to represent the first 𝑜 moves of a chess game; this was chosen since chess has 20 opening moves

and then 43 moves on average for a board state at any given time. The sparsity of the tensor comes

from sparse sampling and pruning of the decision tree, where the fill values represent pruned nodes.

Fig. 30 illustrates that we outperform PyData/Sparse by 6.38× to 70.3× depending on the tensor

order and that our performance improves significantly with increasing tensor order.

9 RELATEDWORKS
We will explore four areas of related work, ordered from most to least relevant. We begin with

prior work on execution of array programs on sparse arrays, which is divided into two strategies:

generating bespoke code for each operation or emulating sparse array programs by reorganizing

data and then calling hand-written functions. We then survey the large body of work on array

programming models (for dense arrays). And finally, we discuss prior work on generalizing sparse

linear and tensor algebra for machine learning and graph algorithms.

Sparse Array Language Compilation
This paper is the first to describe how to generate bespoke code for general sparse array programs—

any function applied across sparse and dense arrays with any fill value, including element-wise

application, broadcasts, and reduction. But there exists prior work on generating code for sparse

linear and tensor algebra, which are subsets of sparse array languages where the functions must be

additions and multiplications applied in linear expressions.

Most directly related to our work is the body of work on the Sparse Tensor Algebra Compiler

(TACO) [Chou et al. 2018, 2020; Kjolstad et al. 2019; Kjolstad et al. 2017; Senanayake et al. 2020].

Our work shows how to generalize the compilation theory behind TACO [Kjølstad 2020] to the

much broader class of array programs, by allowing any function to be applied to sparse arrays with

any fill value. We achieve this generalization by introducing functions with annotated properties,

an iteration algebra containing complements, and omitter points to iteration lattices.

Other prior work on generating bespoke code for subsets of sparse linear algebra include the

MT1 [Bik and Wijshoff 1993], Bernoulli [Kotlyar et al. 1997], and CHiLL-I/E [Venkat et al. 2015]

compilers, which analyze and transform imperative code that implements dense linear algebra

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 R. Henry, O. Hsu, R. Yadav, S. Chou, K. Olukotun, S. Amarasinghe, and F. Kjolstad

kernels to sparse implementations. CHiLL-I/E can transform dense and sparse multiplication

operations on matrices and vectors to implementations where one operand is sparse. MT1 supports

those operations as well as several other built-in operators and intrinsic functions, such as +,

==, and sqrt. It can also generate code for operations with multiple sparse data structures by

introducing dense temporaries, thus turning them into sparse-dense iteration. Bernoulli maps dense

linear algebra implementations to relational algebra and then further maps the relational algebra

to templated sparse implementations.

Sparse Array Language Emulation
The alternative explored in prior work to generating bespoke code for sparse array computations is

to emulate sparse array programs using a finite set of hand-written implementations. That approach

requires data movement to reshape the data to the available functions. An early system of this sort

is the MATLAB Tensor Toolbox [Bader and Kolda 2007], which executes high-order tensor algebra

by re-organizing the tensors to look like matrices. Since this approach requires pre/post-processing

to re-organize data, it is slower than bespoke generated implementations.

We know of only one prior system for the general category of sparse array programming

languages, namely the PyData/Sparse library [Abbasi 2018]. This system executes one two-operand

operation at a time in the following steps: First, a hand-written function iterates through the defined

elements of the two array operands and divides them into three sets: those that both have defined

values, those that only the first operand has, and those that only the second operand has. Next,

it invokes NumPy’s dense implementations to compute the function at hand on each of those

subspaces. And finally, it re-integrates the three sets of resulting values into a result array. By

contrast, our work generates bespoke implementations that do not require data pre/post-processing

and therefore performs significantly better, as shown in our evaluation.

Array Languages
There is a large body of prior work on dense array programming models, as defined in this

paper, going back to APL [Iverson 1962]. Modern variants include ZPL [Lin and Snyder 1993]

and NumPy [Harris et al. 2020], but the core operations—element-wise operations, reductions,

and broadcasts—remain the same. Furthermore, many compiler techniques have been developed

to compile dense array programs, including the polyhedral model [Lamport 1974]. Our novel

contribution is compiling the array programming model to sparse arrays. Another key insight,

which differs from dense array programming models, is that functions applied across sparse arrays

must be decorated with algebraic properties for the system to be able to generate efficient code.

Generalizations of Sparse Linear and Tensor Algebra
Two additional bodies of work have made steps towards the full generalization of sparse array

programming, by generalizing sparse linear and tensor algebra to compute sparse neural networks

and graph algorithms. Systems with support for sparse neural networks must support non-linear

functions in addition to sparse linear algebra. For example, PyTorch [Paszke et al. 2019] supports

hand-implemented softmax and log_softmax on sparse tensors, while TensorFlow [Abadi et al.

2016] supports max element-wise and reduction operations.We expect new non-standard operations

to keep arising in the future, which motivates a comprehensive sparse array programming model.

In addition, several researchers [Davis 2019; Kepner et al. 2016; Mattson et al. 2013] have defined

and implemented APIs, namely GraphBLAS, for linear algebra computations where the operations

are different semirings than (+,×), such as (∧,∨) or (min, +). Computations in different types of

semirings provide surprising features, such as the ability to compute several graph algorithms

through matrix multiplications. And since all semirings behave linearly, the same implementation

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Compilation of Sparse Array Programming Models 1:27

can be reused by just replacing the meaning addition and multiplication. Researchers have also

proposed sparse tensor algebra libraries with support for multiple semirings [Solomonik and Hoefler

2015]. Sparse array programming supports operations in different semirings, but generalizes the

programming model to computations with any function, whether it partakes in a semiring or not.

Furthermore, our work generalizes the arrays to support any fill value.

10 FUTUREWORK
We see many avenues of future work, both in transferring our technology into industry and building

on our theory and implementation. We are investigating how to integrate our technology into third-

party ecosystems such as PyData/Sparse to serve as a code generation back-end. This effort would

allow the larger Python community to take advantage of the general sparse array programming

techniques that we describe. We also aim to explore new research areas stemming from this work,

such as how to provide compiler feedback to the user in catching both performance and correctness

bugs around user supplied function properties and iteration spaces. We also foresee interesting

combinations of sparse iteration algebra with the polyhedral model’s powerful dependency analysis

and transformation primitives. Finally, we aim to extend our implementation to target GPUs so

that programmers can take advantage of GPU acceleration in their sparse array programs. And,

beyond GPUs, we are exploring compilation of sparse array programs to both a new class of sparse

domain-specific architectures and to distributed cloud and supercomputers.

11 CONCLUSION
This paper shows how to build a general compiler for array programs on sparse arrays, by general-

izing prior work on tensor algebra compilation. The resulting compiler can generate efficient code

for programs that apply any function, annotated with algebraic properties, across any number of

sparse arrays. It supports reductions, broadcasts, slicing, and the data structures and fill values

can be selected independently for each array. Moreover, the compiler can fuse together operations

using different functions by generating a joint sparse iteration space. The expressive power of the

sparse array programming language supported by the system is sufficient to encompass dense and

sparse tensor algebra, array programming languages like NumPy, and GraphBLAS systems for

graph algorithms in linear algebra with semirings.

12 ACKNOWLEDGEMENTS
We thank Alex Aiken, Axel Feldmann, Charles Yuan, Aviral Pandey, and Peter Ahrens for their

helpful feedback. Olivia Hsu and Rohan Yadav were supported by an NSF GRFP Fellowship. This

work was supported in part by the Application Driving Architectures (ADA) Research Center, a

JUMP Center co-sponsored by SRC and DARPA; the U.S. Department of Energy, Office of Science,

Office of Advanced Scientific Computing Research under Award Numbers DE-SC0008923 and

DE-SC0018121; DARPA under Awards HR0011-18-3-0007 and HR0011-20-9-0017; and NSF under

Grant Numbers 1937301, 2028602, CCF-1563078, 1563113. This research was also supported in part

by a Google Research Scholar and the Stanford Data Analytics for What’s Next (DAWN) Affiliate

Program—with affiliate members Ant Financial, Facebook, Google, and VMware. Any opinions,

findings, and conclusions or recommendations expressed in this material are those of the authors

and do not necessarily reflect the views of the aforementioned funding agencies.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 R. Henry, O. Hsu, R. Yadav, S. Chou, K. Olukotun, S. Amarasinghe, and F. Kjolstad

REFERENCES
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado, Andy Davis,

Jeffrey Dean, Matthieu Devin, et al. 2016. Tensorflow: Large-scale machine learning on heterogeneous distributed

systems. arXiv preprint arXiv:1603.04467 (2016).

Hameer Abbasi. 2018. Sparse: a more modern sparse array library. In Proceedings of the 17th Python in Science Conference.
27–30.

JohnW. Backus, R. J. Beeber, Sheldon Best, Richard Goldberg, Lois M. Haibt, Harlan L. Herrick, Robert A. Nelson, David Sayre,

Peter B. Sheridan, Harold Stern, Irving Ziller, Robert A. Hughes, and Roy Nutt. 1957. The FORTRAN automatic coding

system. InWestern Joint Computer Conference. Los Angeles, California, 188–198. https://doi.org/10.1145/1455567.1455599

Brett W. Bader and Tamara G. Kolda. 2007. Efficient MATLAB Computations with Sparse and Factored Tensors. Journal on
Scientific Computing 30, 1 (2007), 205–231. https://doi.org/10.1137/060676489

Aart J. C. Bik and Harry A. G. Wijshoff. 1993. Compilation Techniques for Sparse Matrix Computations. In International
Conference on Supercomputing. ACM, 416–424. https://doi.org/10.1145/165939.166023

Navoneel Chakrabarty. 2019. Brain MRI Images for Brain Tumor Detection. https://www.kaggle.com/navoneel/brain-mri-

images-for-brain-tumor-detection

Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2018. Format Abstraction for Sparse Tensor Algebra Compilers.

Proc. ACM Program. Lang. 2, OOPSLA, Article 123 (Oct. 2018), 30 pages.
Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2020. Automatic Generation of Efficient Sparse Tensor Format

Conversion Routines. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation (London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY, USA, 823–838. https:

//doi.org/10.1145/3385412.3385963

Timothy A. Davis. 2019. Algorithm 1000: SuiteSparse:GraphBLAS: Graph Algorithms in the Language of Sparse Linear

Algebra. ACM Trans. Math. Softw. 45, 4, Article 44 (Dec. 2019), 25 pages. https://doi.org/10.1145/3322125

Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix Collection. ACM Trans. Math. Softw. 38, 1,
Article 1 (Dec. 2011), 25 pages. https://doi.org/10.1145/2049662.2049663

Charles R Harris, K Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser,

Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. 2020. Array programming with NumPy. Nature 585, 7825 (2020),
357–362.

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand. 2019. Taichi: a language for

high-performance computation on spatially sparse data structures. ACM Transactions on Graphics (TOG) 38, 6 (2019),
1–16.

Su Huang, Rafail Baimouratov, Pengdong Xiao, Anand Ananthasubramaniam, and Wieslaw L Nowinski. 2006. A Medical

Imaging and Visualization Toolkit in Java. Journal of Digital Imaging 19, 1 (2006), 17–29. https://doi.org/10.1007/s10278-

005-9247-6

Kenneth E Iverson. 1962. A programming language. In Proceedings of the May 1-3, 1962, spring joint computer conference.
345–351.

J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti, J. Gilbert, D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyerhenke, S.

McMillan, C. Yang, J. D. Owens,M. Zalewski, T.Mattson, and J.Moreira. 2016. Mathematical foundations of the GraphBLAS.

In 2016 IEEE High Performance Extreme Computing Conference (HPEC). 1–9. https://doi.org/10.1109/HPEC.2016.7761646

Jeremy Kepner and John Gilbert. 2011. Graph Algorithms in the Language of Linear Algebra. Society for Industrial and

Applied Mathematics, USA.

Jinman Kim, David D. Feng, and Tom W. Cai. 2000. A Web Based Medical Image Data Processing and Management System.

In Selected Papers from the Pan-Sydney Workshop on Visualisation - Volume 2 (Sydney, Australia) (VIP ’00). Australian
Computer Society, Inc., AUS, 89–91.

F. Kjolstad, P. Ahrens, S. Kamil, and S. Amarasinghe. 2019. Tensor Algebra Compilation with Workspaces. In 2019 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO). 180–192. https://doi.org/10.1109/CGO.2019.8661185

Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amarasinghe. 2017. The tensor algebra compiler.

Proceedings of the ACM on Programming Languages 1, OOPSLA (2017), 1–29.

Fredrik Berg Kjølstad. 2020. Sparse tensor algebra compilation. Ph.D. Dissertation. Massachusetts Institute of Technology.

Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill. 1997. A relational approach to the compilation of sparse matrix

programs. In Euro-Par Parallel Processing. Springer, Passau, Germany, 318–327. https://doi.org/10.1007/BFb0002751

Leslie Lamport. 1974. The Parallel Execution of DO Loops. Commun. ACM 17, 2 (1974), 83–93. http://research.microsoft.

com/en-us/um/people/lamport/pubs/do-loops.pdf

Calvin Lin and Lawrence Snyder. 1993. ZPL: An array sublanguage. In International Workshop on Languages and Compilers
for Parallel Computing. Springer, 96–114.

Tim Mattson, David Bader, Jon Berry, Aydın Buluç, Jack Dongarra, Christos Faloutsos, John Feo, John R. Gilbert, Joseph

Gonzalez, Bruce Hendrickson, Jeremy Kepner, Charles E Leiserson, Andrew Lumsdaine, David Padua, Stephen Poole,

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

https://doi.org/10.1145/1455567.1455599
https://doi.org/10.1137/060676489
https://doi.org/10.1145/165939.166023
https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection
https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection
https://doi.org/10.1145/3385412.3385963
https://doi.org/10.1145/3385412.3385963
https://doi.org/10.1145/3322125
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1007/s10278-005-9247-6
https://doi.org/10.1007/s10278-005-9247-6
https://doi.org/10.1109/HPEC.2016.7761646
https://doi.org/10.1109/CGO.2019.8661185
https://doi.org/10.1007/BFb0002751
http://research.microsoft.com/en-us/um/people/lamport/pubs/do-loops.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/do-loops.pdf

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Compilation of Sparse Array Programming Models 1:29

Steve Reinhardt, Michael Stonebraker, Steve Wallach, and Andrew Yoo. 2013. Standards for Graph Algorithm Primitives.

In IEEE High Performance Extreme Computing Conference. IEEE, 1–2. https://doi.org/10.1109/HPEC.2013.6670338

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin,

Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An

Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 8024–8035.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

SciPy. 2021. SciPy Roadmap V1.6.2. https://docs.scipy.org/doc/scipy-1.6.2/reference/roadmap.html [Online; accessed

04/12/2021].

Ryan Senanayake, Changwan Hong, Ziheng Wang, Amalee Wilson, Stephen Chou, Shoaib Kamil, Saman Amarasinghe,

and Fredrik Kjolstad. 2020. A Sparse Iteration Space Transformation Framework for Sparse Tensor Algebra. Proc. ACM
Program. Lang. 4, OOPSLA, Article 158 (Nov. 2020), 30 pages. https://doi.org/10.1145/3428226

Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and George Karypis. 2017. FROSTT: The
Formidable Repository of Open Sparse Tensors and Tools. http://frostt.io/

Edgar Solomonik and Torsten Hoefler. 2015. Sparse tensor algebra as a parallel programming model. arXiv preprint
arXiv:1512.00066 (2015).

K. Somkantha, N. Theera-Umpon, and S. Auephanwiriyakul. 2011. Boundary Detection in Medical Images Using Edge

Following Algorithm Based on Intensity Gradient and Texture Gradient Features. IEEE Transactions on Biomedical
Engineering 58, 3 (2011), 567–573. https://doi.org/10.1109/TBME.2010.2091129

Anand Venkat, Mary Hall, and Michelle Strout. 2015. Loop and Data Transformations for Sparse Matrix Code. In ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2015). 521–532. https://doi.org/10.

1145/2737924.2738003

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu

Peterson, Warren Weckesser, Jonathan Bright, et al. 2020. SciPy 1.0: fundamental algorithms for scientific computing in

Python. Nature methods 17, 3 (2020), 261–272.
Gert Wollny, Peter Kellman, María J. Ledesma-Carbayo, Matthew M. Skinner, Jean-Jaques Hublin, and Thomas Hierl. 2013.

MIA - A free and open source software for gray scale medical image analysis. Source Code Biol Med, Article 20 (2013).
https://doi-org.stanford.idm.oclc.org/10.1186/1751-0473-8-20

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

https://doi.org/10.1109/HPEC.2013.6670338
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://docs.scipy.org/doc/scipy-1.6.2/reference/roadmap.html
https://doi.org/10.1145/3428226
http://frostt.io/
https://doi.org/10.1109/TBME.2010.2091129
https://doi.org/10.1145/2737924.2738003
https://doi.org/10.1145/2737924.2738003
https://doi-org.stanford.idm.oclc.org/10.1186/1751-0473-8-20

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 R. Henry, O. Hsu, R. Yadav, S. Chou, K. Olukotun, S. Amarasinghe, and F. Kjolstad

A APPENDIX
A.1 Array Index Notation Grammar
The full syntax of array index notation can be found in Figure 32.

⟨array_stmt⟩ ::= ⟨access⟩ ‘=’ ⟨expr⟩
⟨access⟩ ::= ⟨tensor⟩ {⟨index⟩ }
⟨index⟩ ::= ⟨index_var⟩ [⟨index_slice⟩]
⟨index_slice⟩ ::= ‘(’ ⟨lo⟩ ‘:’ ⟨hi⟩ [‘:’ ⟨st⟩] ‘)’
⟨expr⟩ ::= ⟨literal⟩ | ⟨access⟩ | ⟨call_expr⟩ | ⟨reduce_expr⟩

| ⟨binary_expr⟩ | ⟨unary_expr⟩ | ‘(’ ⟨expr⟩ ‘)’
⟨call_expr⟩ ::= ⟨func⟩ ‘(’ ⟨expr⟩ {‘,’ ⟨expr⟩} ‘)’
⟨reduce_expr⟩ ::= ⟨𝑓 𝑢𝑛𝑐⟩

⟨𝑖𝑛𝑑𝑒𝑥_𝑣𝑎𝑟 ⟩
⟨expr⟩

⟨binary_expr⟩ ::= ⟨expr⟩ ⟨op⟩ ⟨expr⟩

Fig. 32. The syntax of array index notation. Expressions within braces may be repeated any number of times.
⟨𝑓 𝑢𝑛𝑐⟩ and ⟨𝑜𝑝⟩ both represent arbitrary (user-defined or predefined) functions and are implemented in the
same way; they differ only in how they are invoked.

A.2 PyData/Sparse API
An example of performing the xor operation on two sparse tensors using PyData/Sparse is found

below.

1 import numpy

2 import sparse

3

4 # Create some tensors.

5 dim = 1000

6 A = sparse.random((dim, dim, dim))

7 B = sparse.random((dim, dim, dim))

8 # Perform the XOR computation.

9 C = numpy.logical_xor(A, B)

An example performing the GCD operation can be found below:

1 import numpy

2 import

3

4 def gcd(x, y):

5 return ... # Compute the GCD between x and y.

6 # Register the gcd function as a ufunc.

7 gcd = np.frompyfunc(gcd, 2, 1)

8

9 # Create some tensors.

10 dim = 1000

11 A = sparse.random((dim, dim, dim))

12 B = sparse.random((dim, dim, dim))

13 # Perform the XOR computation.

14 C = gcd(A, B)

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Compilation of Sparse Array Programming Models 1:31

While this code is simpler than the code to use our sparse array compiler, users do not have

control over many factors, such as the formats of the tensors, and are restricted to the predefined

set of NumPy functions.

A.3 Iteration Lattice Construction Algorithm
As described in Section 6, the presented iteration lattice construction algorithm (Algorithm 1)

supports only array index notation expressions that do not contain repeat tensors. Fig. 18 illustrates

an example of when iteration sub-spaces do not overlap when the index notation contains a repeated

tensor. This example motivates our implementation of a filtered Cartesian Product.

We include the full algorithm that does support repeated tensors in Algorithm 2.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1:32 R. Henry, O. Hsu, R. Yadav, S. Chou, K. Olukotun, S. Amarasinghe, and F. Kjolstad

Algorithm 2 Full iteration lattice construction algorithm

procedure ConstructLattice (FunctionAlgebra A, FunctionArguments args)

// Preprocessing steps

Algebra A = DeMorgan(A) ⊲ Apply De Morgan’s Law

Algebra A = Augment(A, args) ⊲ Augmentation pass

return BuildLattice(A)

end procedure

// let L represent an iteration lattice and 𝑝 represent an iteration lattice point

procedure BuildLattice (Algebra A)
if A is Tensor(t) then ⊲ Segment Rule

return L(𝑝({ t }, producer=true))

else if A is ∼Tensor(t) then ⊲ Complement Rule

𝑝𝑜 = 𝑝({ t, U }, producer=false)

𝑝𝑝 = 𝑝({ U }, producer=true)

return L({ 𝑝𝑜 , 𝑝𝑝 })

else if A is (left ∩ right) then ⊲ Intersection Rule

L𝑙 , L𝑟 = BuildLattice(left), BuildLattice(right)

cp = FilteredCartesianProduct(L𝑙 .points(), L𝑟 .points())

mergedPoints = { 𝑝({ 𝑝𝑙 + 𝑝𝑟 }, producer=𝑝𝑙 .producer ∧ 𝑝𝑙 .producer) : ∀(𝑝𝑙 , 𝑝𝑟) ∈ cp }

mergedPoints = RemoveDuplicates(mergedPoints, ommitterPrecedence)

return L(mergedPoints)

else if A is (left ∪ right) then ⊲ Union Rule

L𝑙 , L𝑟 = BuildLattice(left), BuildLattice(right)

cp = FilteredCartesianProduct(L𝑙 .points(), L𝑟 .points())

mergedPoints = { 𝑝({ 𝑝𝑙 + 𝑝𝑟 }, producer=𝑝𝑙 .producer ∨ 𝑝𝑙 .producer) : ∀(𝑝𝑙 , 𝑝𝑟) ∈ cp }

mergedPoints = mergedPoints + L𝑙 .points() + L𝑟 .points()

mergedPoints = RemoveDuplicates(mergedPoints, producerPrecedence)

return L(mergedPoints)

end procedure

procedure FilteredCartesianProduct (LatticePoints left, LatticePoints right)

𝑝𝑙,root, 𝑝𝑟,root = left.root, right.root

for (𝑝𝑙 in left) × (𝑝𝑟 in right) do overlap = true

for tensor in 𝑝𝑙 do
if (tensor in 𝑝𝑟,root) ∧ (tensor not in 𝑝𝑙) then overlap = false

end for
for tensor in 𝑝𝑟 do

if (tensor in 𝑝𝑙,root) ∧ (tensor not in 𝑝𝑙) then overlap = false

end for
if overlap then cp += {(𝑝𝑙 , 𝑝𝑟)}

end for
return cp

end procedure

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Compilation of Sparse Array Programming Models 1:33

A.4 Medical Imaging Edge Detection

Fig. 33. Example MRI image, thresholding, ROI mask, and output

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 1. Publication date: November 2021.

	Abstract
	1 Introduction
	2 Motivation
	3 Overview
	4 Sparse Array Programming Model
	4.1 Sparse Arrays and Fill Values
	4.2 Array Index Notation
	4.3 Generalized Functions

	5 Generalized Iteration Spaces
	5.1 Iteration Algebra
	5.2 Deriving Iteration Algebras

	6 Generalized Iteration Lattices
	6.1 Background
	6.2 Representing Set Complements
	6.3 Construction

	7 Generalized Code Generation
	7.1 Lowering Generalized Iteration Lattices
	7.2 Reduction Optimizations
	7.3 Slicing

	8 Evaluation
	8.1 Methodology
	8.2 Comparison to Sparse Array Programming Libraries
	8.3 GraphBLAS Kernels
	8.4 Applications

	9 Related Works
	10 Future Work
	11 Conclusion
	12 Acknowledgements
	References
	A Appendix
	A.1 Array Index Notation Grammar
	A.2 PyData/Sparse API
	A.3 Iteration Lattice Construction Algorithm
	A.4 Medical Imaging Edge Detection

