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Abstract—Onyx is a system-on-chip (SoC) with a coarse-
grained reconfigurable array (CGRA) for accelerating sparse and
dense tensor algebra and dense image processing and machine
learning applications. To support multiple inputs, multiple di-
mensions, and fusion in sparse applications, Onyx utilizes com-
posable memory primitives that operate on compressed storage
and streams, and compute primitives that eliminate unnecessary
calculations. Onyx also improves performance on dense appli-
cations with application-specialized processing elements, area-
optimized memory tiles, and hybrid clock gating in the global
buffer. Onyx achieves a peak energy efficiency of 756 INT16
GOPS/W, up to 565× better energy-delay product (EDP) for
sparse kernels vs. CPUs with sparse libraries, and up to 76%
and 85% lower EDP for image processing and machine learning,
respectively, versus a state-of-the-art CGRA.

Index Terms—Coarse-grained reconfigurable array (CGRA),
reconfigurable accelerators, compilers, sparse matrices, computer
vision, image processing, machine learning (ML)

I. INTRODUCTION

APPLICATIONS ranging from machine learning to sci-
entific computing leverage hardware accelerators to im-

prove performance and energy efficiency [1], [2]. Many of
these accelerators focus on input data sparsity to skip in-
effectual computation [3], [4], [5]. End-to-end applications,
however, contain both dense and sparse portions [6]. Prior
works typically combine specialized accelerators for different
portions of an application on the same chip. For example,
[7] contains separate accelerators for convolutional neural
networks (CNNs) and graph convolutional networks (GCNs).
These accelerators achieve high performance and efficiency
for the applications they are designed for, but they are either
inefficient or incapable of supporting other applications, and
become unusable when a better algorithm is designed.

In contrast, programmable accelerators can accelerate ap-
plications as they evolve [8], [9]. These accelerators offer
significant performance and energy efficiency improvements
over general-purpose computing, but have primarily focused
on dense data [10], [11]. Additionally, many of the hardware
accelerators mentioned above propose architectural advances
that may or may not include hardware implementations [3],
[4], [5] and none are fabricated [11]. As shown by the
comparison table presented in Table IV, there does not exist a
fabricated programmable accelerator for sparse applications.
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Fig. 1: End-to-end applications are broken down into dense and sparse
kernels based on data sparsity. Then those kernels are mapped onto
Onyx, which can accelerate both dense and sparse kernels.

Therefore, Onyx overcomes the limitations of prior acceler-
ators by supporting dense and sparse kernels on the same fabri-
cated, programmable accelerator as shown in Figure 1. End-to-
end applications can be divided into sparse and dense portions,
and then each of these portions can be accelerated on Onyx.
Specifically, Onyx contains a coarse-grained reconfigurable
array (CGRA) with composable tiles that allows it to support
tensor algebra expressions with both sparse and dense tensors,
multiple inputs, higher-order tensors, and fusion. In addition
to sparse tensor algebra, Onyx also has dedicated support for
image processing and machine learning applications. Onyx
achieves this generality through the following contributions:

1) Composable memory primitives to store compressed
representations of any-dimensional tensors.

2) Composable compute primitives that eliminate ineffec-
tual computation and support all of sparse tensor algebra.

3) An automatic end-to-end sparse compiler that maps from
high-level tensor index notation, also referred to as
Einstein summation (Einsum) notation, to the hardware.

4) Optimizations to the sparse compiler, including software
pipelining, kernel unrolling, and tensor tiling, for more
performant mapping of sparse tensor expressions.

5) Application-driven processing element design and mem-
ory hierarchy optimizations to improve performance and
efficiency of dense applications.

Onyx achieves up to 76% improvement in energy-delay
product (EDP) over a state-of-the-art programmable accel-
erator on dense applications and is up to 565× better in
EDP versus CPUs with dedicated sparse libraries on sparse
applications. Overall, this work demonstrates an approach
to accelerate complete domains of applications on the same
programmable hardware.
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matrices before and after computation (Tambe)
● Exploit application specific sparsity: ex: skipping zeros in the 

channel dimension of a CNN (Huang) or for a convolution (Sun) 
● Limited to given application!

Onyx Accelerates Domains of Applications!

Sparse Networks
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● Sun ISSCC 2023, Tambe ISSCC 2023 and several others, focus on exploiting 
sparsity on specific networks

○ Sun - specialized sparse convolution core for 3D processing
○ Tambe - compresses and decompresses sparse matrices before and after matrix 

multiplication in BERT

● Huang VLSI 2022: Enables sparsity acceleration for a CNN and a GCN
○ Exploits channel sparsity in CNNs and sparse features of graphs
○ Two types of applications! But not extendable…
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Fig. 2: Onyx SoC architecture. The accelerator contains a CGRA, a
global buffer (GLB), and an ARM M3 control processor.

II. ONYX ARCHITECTURE

Onyx is a system-on-chip (SoC) composed of a 32×16
CGRA, a 4 MB global buffer (GLB), and an ARM M3
processor [12], as shown in Figure 2. The CGRA has 384
processing element (PE) tiles and 128 memory (MEM) tiles.
Each PE contains an arithmetic logic unit (ALU), a 64 byte
register file (RF), and compute sparse primitives, described
in Section III-C. Each MEM contains a 4 KB SRAM, a
memory controller for dense applications [13], and a memory
controller for sparse applications, described in Section III-B.
The CGRA has three PE columns per MEM column. The tiles
are connected through a statically configured interconnect that
supports static (for dense applications) and dynamic (for sparse
applications) data movement [14]. The interconnect routes 17
bit data signals through switch boxes (SBs) and connection
boxes (CBs) that are inside the PE and MEM tiles. Each
PE and MEM has a switch box which selects the direction
in which we send outgoing data, and connection boxes to
bring incoming data. The GLB is composed of 16 GLB tiles.
Each GLB tile has a 16-bit two-way connection to the CGRA,
contains two 128 KB SRAM banks, load and store units, and
a specialized configuration network [15].

III. SPARSE HARDWARE

To accelerate arbitrary sparse tensor algebra, Onyx contains
hardware implementations of the sparse acceleration primitives
defined by the sparse abstract machine (SAM) [16]. We
design (1) sparse memory primitives that convert between
compressed storage and streams, (2) sparse compute primitives
that eliminate ineffectual compute and support tensor algebra
operations, and (3) a ready-valid interconnect.

A. Sparse Abstraction

We utilize the fibertree abstraction [17] and SAM’s stream-
ing tensor abstraction [16] to express tensors on Onyx. Fig-
ure 3 shows an example tensor, its corresponding fibertree
format, its SAM stream representation, and its storage format
as a doubly compressed sparse row (DCSR) data structure.
Each level of a fibertree is a dimension of a tensor and is
composed of fibers, which are lists of coordinates highlighted
in gray and corresponding references to their payload (either
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another fiber or a value). In our example, we have the fiber
[0, 1, 3] at level i, meaning that rows 0, 1, and 3 are nonzero.
Each coordinate points to a child fiber at a lower level; this
pointer is called a reference. The last level of a fibertree is
composed of the actual values of the tensor. Fibertrees can
be represented as streams or storage [16] in our hardware.
There are three types of streams: coordinates, references, and
values. Streams have hierarchical stop (Sn) tokens to denote
boundaries between fibers, done tokens (D) to denote the end
of a stream, and maybe tokens (M ) to denote empty fibers.

B. Memory Tile Primitives

The memory tile is used to store a level of a fibertree.
It contains three sparse memory controller primitives: level
writer, level buffer, and level scanner. The level writer con-
sumes a coordinate stream and writes it to the level buffer.
It uses a coordinate address generator and a segment address
generator to calculate coordinate and segment addresses and a
coordinate counter to calculate the segment size. Specifically,
the coordinate counter and coordinate address increment for
each value token and the segment address increments with
each stop token. A mux selects between writing a segment or
a coordinate, and the address generators generate addresses to
write to the corresponding array. For example, for the stream
in Figure 4, the level writer first forwards the coordinates to
write to the coordinate array. Simultaneously, the coordinate
counter counts 3 tokens and generates (0, 3) to write to the
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segment array. To store the value level of the fibertree, we
send the values instead of coordinates to the level buffer.

The level buffer receives writes and reads from the level
writer and level scanner, respectively, and performs explicit
decoupled data orchestration (EDDO [18]). It is either parti-
tioned into segment and coordinate arrays or is a value array. It
arbitrates between reads and writes with a cache line to avoid
repetitive reads of the same 4-element word in consecutive
accesses. Specifically, during the writing process, a write state
machine writes each value to a cache line and does a group
write when the line is full. If the cache line is not full, but
the stream has ended, the state machine pushes the cache
line with zeros filled in. When a read request comes in, the
read state machine checks if the read request for that address
was previously performed. If so, it uses the read cache line,
otherwise it performs a new read request. With only a single
memory port, all read and write accesses go through an arbiter
that processes requests in order.

The level scanner takes in a reference stream pointing to a
fiber(s) and produces a stream of coordinates and references
to the next level. Each value in the incoming reference stream
is the index of a fiber stored in the memory tile. That index
points to the segment we want to read out of the memory
tile. First, the level scanner receives an input reference stream.
To produce next level coordinate and reference streams, the
Seg/Val state machine reads the segment size from the level
buffer, then the Coord state machine reads the coordinates.
For each value token in the reference stream, the Seg/Val state
machine issues two segment reads and reserves a stop token
for the coordinate output stream in a reservation buffer. If
the upcoming stop token is at level i, the reserved token is
i + 1. The two segment values are placed in the coordinate
state machine. A counter iterates using these values to generate
addresses to read from the coordinate array and places them
in the coordinate FIFO. These coordinates are sent out of the
tile as a coordinate stream, and an address generator generates
the corresponding reference stream. In this example (for the
highest tensor level), we use a root stream [0, D]. Otherwise,
the memory tile receives a reference stream from upstream
primitives. The level scanner first grabs the segment tuple
(in this example (0, 3)) from the level buffer to determine
the fiber length (3). Then the fiber length is used to grab
the coordinates [0, 1, 3, S0, D] from the level buffer and
produce the coordinate stream. An address generator produces
the corresponding reference for each coordinate to create the
reference stream [0, 1, 2, S0, D].

C. Processing Element Tile Primitives

The intersecter/unioner, reducer, repeater, and coordinate
dropper primitives are added to the processing element tile.
They perform computation on coordinates, references, and
values to eliminate ineffectual compute. Figure 5 shows the
implementation of each primitive, along with example input
and output streams. The intersecter/unioner calculates the
intersection/union of coordinate streams of two tensors to
produce only non-zero output indices. The intersecter performs
a two-way merge and only emits coordinates and references of
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both streams on equivalent coordinates, dequeuing the FIFO
with the lower value. The unioner uses the same hardware
but collects and outputs all coordinates (merging duplicate
coordinates), also dequeuing the FIFO with the lower value.
While complete, these primitives may produce empty fibers.
The coordinate dropper removes the coordinates associated
with empty fibers by registering, looking for, and dropping
contiguous stop tokens in the inner coordinate stream and its
corresponding outer coordinate as well. The reducer performs
a sum over a stream, outputting a single value, and the repeater
duplicates streams for tensor broadcasting.

D. Ready-Valid Interconnect

The primitives described above produce data-dependent
access patterns and have non-deterministic latency. We add
ready-valid capability and FIFOs utilizing the hardware gen-
eration features described in [14] to the baseline architecture
described in [10] to support these attributes. Naively, we could
replace pipeline registers with two-element FIFOs. However,
we avoid doubling the number of registers by designing a
“SplitFIFO” composed of pipeline registers in adjacent tiles
sharing control signals, which saves us 13% in interconnect
area. Next, we add a bit to the 16-bit interconnect to designate
the special tokens described above (e.g. stop, done). Finally, in
our sparse application graphs, a producer node may broadcast
to several consumer nodes. Mapped to our hardware, this
is a producer FIFO sending data to an arbitrary number of
consumer FIFOs on the interconnect. If any of the consumer
FIFOs are not ready, we must prevent the producer FIFO from
outputting valid data. To accomplish this, our CGRA performs
an and, in SBs at broadcast points, on all incoming ready
signals to generate an enable for the producer FIFO.

IV. SPARSE COMPILER

Our sparse application compiler leverages the Custard com-
piler from [16]. Custard takes as input three high-level domain-
specific languages (DSLs) that describe the algorithm (or
expression) [19], compression format [20], and schedule [21]
of the sparse tensor algebra application and produces SAM
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1 // Format language:
2 // comprised of level formats and mode orderings
3 Format dcsr({sparse, sparse}, {0, 1});
4 Format dcsc({sparse, sparse}, {1, 0});
5
6 // Declare input and output tensors
7 Tensor<int> X({I,J}, dcsr);
8 Tensor<int> B({I,K}, dcsr);
9 Tensor<int> C({K,J}, dcsc);

10
11 // Define the SpMSpM expression (algorithm)
12 IndexVar i, j, k;
13 X(i, j) = B(i, k) * C(k, j);
14
15 // Scheduling language: inner-product dataflow
16 IndexStmt stmt = A.getAssignment();
17 stmt = stmt.reorder({i, j, k})

Fig. 7: Input code to Onyx’s sparse compiler for SpMSpM.

dataflow graphs. The contribution of this work is creating an
end-to-end compilation path from these high-level languages
to hardware. We achieve this by designing a new back-end
compilation path from SAM to the CGRA bitstream (Figure 6)
through an Onyx-aware sparse dataflow graph intermediate
representation (IR). Our compiler maps the sparse primitives
from this hardware-aware dataflow IR onto Onyx’s tiled ar-
chitecture [13], places and routes (PnRs) the application [22]
with a pipelining algorithm introduced in Section IV-E and
generates the CGRA’s configuration bitstream. Finally, it tiles
the input data as described in Section IV-C, and pushes it
through the configured CGRA to execute the application.

A. Running Example for a Sparse Application

We will use sparse-matrix sparse-matrix multiplication
(SpMSpM) as a running example to demonstrate how the
primitives in Onyx compose to implement arbitrary sparse
tensor algebra expressions. SpMSpM is represented in Einsum
notation as Xij =

∑
k BikCkj , and in our example X and B

are stored in doubly compressed sparse row (DCSR) format
and C is stored in doubly compressed sparse column (DCSC)
format for the inner-product dataflow (i → j → k order).
Custard compiles the input program for this example (shown
in Figure 7) to a SAM dataflow graph.

Figure 8 shows how Onyx computes SpMSpM. Intermediate
reference (ref) and coordinate (coord) streams are shown at
each step of the SAM dataflow graph. First, we have two
pairs of level scanners (B: level i and C: level j) and repeaters
for the outer dimension of each matrix. The level scanner/re-
peater pairs produce replicated references indicating nonzero
rows/columns (in matrix multiplication, B is replicated for
each j and C for each i). Next, those replicated references are
fed into level scanners for the shared dimension (k) of each
matrix. These level scanners produce reference-coordinate
pairs that are intersected to determine the values that need to
be multiplied. The resulting intersected pairs are then used to
read values, multiply, and reduce them, before, finally, a level
writer writes the output values to memory. Similarly, using our
composable primitives, we can accelerate any sparse tensor
algebra expression on our CGRA.

B. Onyx-aware Lowering

The lowerer performs dataflow graph rewrites—with some
rewrites illustrated in Figure 9—and lowers SAM to an
Onyx-aware IR. This IR is similar to SAM but defines type
constraints on the neighbors of nodes and details wiring
information between those neighbors.

First, the lowerer performs primitive remapping, which
automatically transforms certain primitives—like joiner, mem-
ory tile, and stream broadcasting primitives—to more closely
resemble the Onyx hardware. For remapping joiner primitives,
the lowerer transforms any N-ary SAM joiner into a tree of
multiple binary joiners since the Onyx hardware only includes
binary joiner implementations. We show an example of this
remapping from one trinary intersect joiner to a tree of three
binary intersect joiners in Figure 9 part 1). Next, the lowerer
performs memory primitive expansion to remap memory tile
primitives as shown in Figure 9 part 2). In this transformation,
the lowerer elaborates individual level scanners and writers in
the SAM graph to level scanner, buffer, and writer primitive
triplets. This remapping transformation is necessary because
each of the sparse memory tiles in Onyx must sequence
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reads from and writes to memory, which means that each
tile contains a level scanner, buffer, and writer triplet. Finally,
the lowerer also replaces all stream broadcasting nodes in
SAM with multiple point-to-point primitive connections since
the CGRA interconnect and router support broadcasting to
multiple wires by default.

After all of the primitives are remapped, the Onyx-aware
lowerer also performs signal elaboration. Each node in the
Onyx-aware IR is similar to a SAM primitive but includes
a list of valid neighboring nodes and the elaborated signals
between those neighboring node types. As shown in Figure 9
part 3), the abstract signal connections in SAM are elaborated
to multiple actual wires each with a specified bit-width (i.e.
one-bit ready and valid, and multi-bit data). The example in
Figure 9 part 3) demonstrates how the lowerer would elaborate
the single ‘values’ input and ‘values’ output connections of a
generic SAM primitive into actual input and output ‘values’
connections that implement ready-valid signaling.

C. Sparse Data Tiling

Our sparse compiler automatically generates tiled data that
fits within the global buffer and sub-tiles that fit within the
memory tile (Figure 10). For each sparse tensor expression
written in Custard, the application compiler produces CPU
application code to generate these tiles and sub-tiles for each
dataset run. The sparse data tiling flow also handles the
generation of tiles and sub-tiles for unrolled execution.

For performance and efficiency, we skip over empty tiles,
and do not send them to Onyx. We accomplish this tiling by
generating code to create N ×N tiles and M ×M sub-tiles,
both tiled in coordinate space. The generated code produces tu-
ples of sub-tiles within a tile, matching on shared dimensions.
Sub-tile matching is different for each expression and dataset
since the code compresses away empty sub-tiles and the shared
dimensions in the input tensors depend upon Custard’s input
expression. For example, in matrix multiplication, sub-tiles for
B and C are paired along the k dimension. During evaluation
and testing, we sweep over N and M , ensuring that data does
not overflow the global buffer or memory tile capacities.

D. Fusion

Onyx’s generality supports higher-order tensors, multiple
inputs, and, importantly, expression fusion, which eliminates
the materialization of entire temporary tensors and ineffectual
computation across all inputs. To illustrate fusion across
multiple inputs, we extend our matrix multiplication example
to a sampled matrix multiplication Xjl =

∑
k BjlCjkDkl.

Sparse tensor accelerators that only support unfused two input
expressions (both fixed-function and reconfigurable) [23]–[27],
would compute the sampled matrix multiplication as unfused
expressions Tjl =

∑
k CjkDkl and Xjl = BjlTjl. In the

unfused case, the entire temporary tensor Tjl is materialized in
memory. Additionally, this schedule may materialize nonzero
elements that are not required in the final result tensor as
shown in Figure 10. Our sparse application compiler can
compose sparse memory and PE tiles to compute such multi-
input expressions in a single accelerator call on the CGRA.

E. Pipelining

Our CGRA has the ability to register data on each hop
of the interconnect to ensure short critical paths. To achieve
maximum application frequencies, we exhaustively pipeline
all routes on our CGRA with the SplitFIFOs described in
Section III. However, exhaustively pipelining a fixed route
does not take into account uneven paths in SAM graphs
that can cause backpressure, which in turn causes bubbles
in application execution. Therefore, we apply a balancing
algorithm before tile placement, which evens out these paths.
The balancing algorithm (Figure 10) finds reconverging paths
in the dataflow graph, which occur at joiner nodes (the second
blue box), and inserts an equivalent amount of SplitFIFOs
(purple boxes) on the path with fewer primitives. Finally,
the compiler places the balanced graph on the accelerator
and performs exhaustive pipelining to ensure high application
frequencies. We leverage prior work [13], [22] for the final
steps of our sparse compiler, which include mapping the
lowered dataflow graph of the sparse application onto an
abstract graph of CGRA nodes, placement and routing onto
the CGRA, and bitstream generation.

V. DENSE OPTIMIZATIONS

We use the CGRA from [10] as a baseline CGRA for
dense image processing and machine learning applications. By
increasing our compute density and improving our efficiency
across the memory hierarchy we are more performant and
energy efficient than the prior state-of-the-art CGRA.

A. PE Specialization

We increased the complexity of the computation done in
the PE and specialized it to best fit the targeted application
domain while still maintaining the flexibility to execute several
applications. We used an automated application domain-driven
PE specialization methodology [28] to optimize the PEs for
a set of ML and image processing applications. We take
dataflow graphs of our applications and perform subgraph
mining to extract the most frequent computational subgraphs.
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Fig. 12: Effect of PE specialization on array utilization.

We then perform an area-optimal merging of the most frequent
subgraphs and add them to a baseline PE that contains a
set of general purpose operations. The resulting Onyx PE
is shown in Figure 11. The PE performs either single or
multiple (e.g., multiply-add, add-add, multiply-shift, min-max)
Int8/Int16 operations, or a single BFloat16 operation. With
this specialization, we achieve a 12.5− 41% reduction in the
number PEs used vs. Amber [10] for the same application
parallelization. This allows us to further parallelize the ap-
plications, leading to up to 50% decrease in the number of
execution cycles. Finally, since our PEs are composable, we
can support larger integer formats, such as Int32.

B. Memory Tile

We optimized our memory controllers for dense applica-
tions, as shown in Figure 13. In the baseline memory tile [10],
each controller is composed of an iteration domain (ID), an
address generator (AG), and a schedule generator (SG), which
generate an affine access pattern at each memory port [29].
Our optimizations consist of (1) simplifying the write port
controller, (2) reducing the depth of the serial-in, parallel-out
(SIPO) buffer and (3) reducing the bit widths of counters and
configuration registers. We could simplify the write controller
because complex write address generation is only needed in
update (read-modify-write) operations, in which case we can
reuse the addresses generated by the read controller by adding
a delay block. To justify reducing the SIPO buffer and bit
widths of counters and configuration registers, we analyzed
the maximum SIPO depth and number of bits needed in our
dense applications and removed unnecessary hardware. These
optimizations reduce the area of the memory tile by 24%.
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C. Global Buffer

In a CGRA, it is critical that unused elements dissipate
as little power as possible since the number of active ele-
ments varies widely between applications. Given the large
idle energy of memories, memories should be clocked only
while being used. However, clock gating the GLB requires
special consideration because some blocks may be gated
statically while others’ status are only known at runtime.
Sending data from the CPU or off-chip to the GLB requires
dynamic gating, whereas for a given application, load, store,
and dynamic partial reconfiguration (DPR) usage is known
ahead of time and can be statically gated. We implement a
hybrid static/dynamic gating scheme for the different GLB
blocks as shown in Figure 14. The GLB tile is composed
of two banks, a bank mux, store (ST), load (LD), and DPR
DMAs, and ring, AXI, and configuration switches. On the
workload shown that double buffers data into and out of the
CGRA, Tile 1 receives a processor write from the subsystem
and loads data into the CGRA. The LD DMA can be statically
clock gated because the schedule is known, whereas the banks
and AXI switch are dynamically clock gated. Tile 2 receives
a processor read request and data from the CGRA. In Tile 2,
the ST DMA can be statically clock gated but the banks and
AXI switch are dynamically gated. In this example, our gating
scheme achieves a 24% reduction in GLB power.
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TABLE I: Onyx specifications.

Technology GlobalFoundries 12nm FinFet
Project Area 23 mm2

Processor ARM-M3 CPU
Voltage 0.78 V

Frequency (Processor) 500 MHz
Frequency (CGRA) 970 MHz
Peak Performance 571 INT16 GOPS

Peak Energy Efficiency 756 GOPS/W

+27%

-19%

+37%

+17%

Onyx 23.00

  Global Buffer   4.45

    GLB Tile     0.249

  CGRA   8.28

    PE Tile     0.011

    MEM Tile     0.023

Memory Tile Cell Area (μm2) Processing Tile Cell Area (μm2)

Layout Area (mm2)

Amber

+ Sparse 
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+ Dense

Optimization

Amber

+ Sparse 
Primitives

+ PE Domain 
Specialization

SRAM Interconnect Sparse PrimitivesConfig Reg Dense Ctrl ALU RF
0K 5K 10K 15K 20K 0K 3K 5K 8K 10K

Fig. 15: Memory and PE tile synthesis areas showing the changes
after optimizations and added features.

VI. RESULTS

Onyx is fabricated in GlobalFoundries 12 nm technology.
Figure 1 shows an annotated die photo. As shown in Table I,
we use an I/O voltage of 1.8 V and a core voltage of 0.78 V
unless otherwise noted. Onyx reaches a maximum frequency
of 500 MHz for the processor subsystem and 970 MHz for the
CGRA, and achieves a peak performance of 571 INT16 GOPS
and peak energy efficiency of 756 GOPS/W. Our results are
compared against reported numbers, and we do not normalize
for technology differences.

A. Area Breakdown

The layout area breakdown of Onyx is shown in Table II.
To understand how these areas compare with prior work,
Figure 15 shows the cell areas of the PE and memory tiles
in Amber [10] and Onyx. To understand the changes in the
area vs. Amber, we look at unflattened synthesis area results.
Adding sparse primitives to the memory tile increases the
memory tile size by 27%. The memory tile optimizations
described in Section V-B decrease the area by 19%. For the
PE tile, adding sparse primitives increases the area by 37%
with most of the area increase coming from the interconnect.
Adding application specialization further increases the PE tile
area by 17%, but allows us to achieve higher application
unrolling as discussed in Section V-A.

B. Dense Application Results

1) Image Processing and Convolutional Layers: We use the
Halide compiler [30] [13] to map image processing (Gaussian
blur, unsharp masking, Harris corner detection, and camera

TABLE II: Onyx layout area.

Onyx 23.00 mm2

Global Buffer 4.45 mm2

GLB Tile (each) 0.249 mm2

CGRA 8.28 mm2

PE Tile (each) 0.011 mm2

MEM Tile (each) 0.023 mm2
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art CGRA for image processing and computer vision applications.
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pipeline) and machine learning applications to our CGRA. All
images, weights, and outputs are stored on chip. We compare
our image processing results against an ARM Cortex A57
CPU, an Intel Xeon CPU, an NVIDIA Tesla K40 GPU, a
Xilinx Virtex Ultrascale FPGA, and the Amber CGRA [10].

With the improvements described in Section V, we achieve
up to a 76% energy-delay product (EDP) reduction vs. Amber
on image processing applications (Figure 16). For convolu-
tional layers, we achieve 61–68% lower runtime and 43–55%
lower energy vs. Amber (Figure 17).

2) Performance of CNN Models for Image Classification:
We implement MCUNet [31], MobileNetV2 [32] and ResNet-
18 [33] for image classification tasks on the ImageNet [34]
dataset. For each model, weights are streamed on chip for
each individual layer. For MCUNet, we perform end-to-end
inference, storing all intermediate activations in the global
buffer. For MobileNetV2 and ResNet-18, we perform layer-
by-layer inference due to on-chip memory constraints. More
specifically, for MobileNetV2 and ResNet-18, we stream out-
put activations off chip, reorganize the data and then stream
them back onto the chip, which allows us to optimally map
each layer on the CGRA. Future work will explore acceler-
ating this data reorganization. To enable faster evaluation, we
analytically select a subset of 1,000 samples from the 50,000
validation images, ensuring that the baseline accuracy on the
GPU matches the reference. For ResNet-18, we applied post-
training quantization to convert weights and activations from
FP32 to INT8. Scaling factors were constrained to powers of
two, enabling efficient quantization and dequantization via bit
shifting.

Table III presents the data formats, runtime, energy, and
accuracy for each model on the Onyx chip. The accuracy
drop compared to the reference is shown in parentheses and
is negligible for all three models.
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TABLE III: Runtime, energy, and accuracy results for CNN models on 1,000 ImageNet samples.

Model Formats Runtime (ms/frame) Energy @ 0.74V (mJ/frame) Accuracy (Drop)
MCUNet BFloat16 (activations, weights, accumulation) 92.79 8.52 68.4% (-0% vs. [35])
MobileNetV2 BFloat16 (activations, weights, accumulation) 72.80 10.28 72.2% (+0.3% vs. [36])
ResNet-18 INT8 (activations & weights), INT16 (accumulation) 88.67 20.82 68.9% (-0.86% vs. [37])
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C. Sparse Application Results

We use the sparse application compiler described in Sec-
tion IV to map sparse expressions onto our accelerator.
We evaluate 2D sparse expressions on matrices from the
SuiteSparse [38] dataset (99.0-99.95% sparsity, 1813×1813-
2021×2021 dimensions) or generated uniform random sparse
matrices. For expressions with 3D tensors, we generate uni-
form random tensors (67% sparsity, 8×37×10-28×35×54
dimensions), unless otherwise noted. We stream tiles of tensors
onto the chip for operands that are larger than the GLB. All
sparse application intermediates used to compute tiled results
are stored on chip. This section first details the performance
impact of the compiler optimizations introduced in Section IV
and then shows our final sparse application results across
several kernels.

1) Compiler Optimizations: First, we start with expression
fusion. As described in Section IV-D, we utilize fusion to
eliminate temporary tensors and ineffectual compute across
multi-input expressions. Figure 18 shows the runtime of
unfused graphs versus a fused graph for matricized-tensor
times Khatri-Rao product (MTTKRP) with different input
sparsities (on 10×10×10 and 10×10 tensors). As B gets
sparser and C and D get denser, the speedup increases up to
11.8×. Figure 19 (left) shows the runtime for a four-iteration
iterative sparse matrix-vector multiplication. Since unfused
kernels have fewer inputs, we can benefit from unrolling. Even
with this optimization, the fused kernel performs 4.6× faster
than the unfused kernels.

Application pipelining is performed as described in Sec-
tion IV-E. Figure 21 shows matrix-multiplication runtime
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Fig. 20: Sparse accelerator vs. dense accelerator runtime results on a
512×512 matrix multiplication of varying sparsity.

results with no pipelining, when only exhaustive pipelining
is applied, and when balancing is applied before exhaustive
pipelining. Balancing ensures that there are no imbalanced
paths in the mapped application graph and exhaustive pipelin-
ing ensures high application frequency.

Since our CGRA is homogeneous, we can unroll or par-
allelize a bitstream over the array to improve performance.
Unfortunately, feeding tiles into two parallel matrix multi-
plications in order can lead to load imbalance and result in
suboptimal performance. In Figure 19 (right), we compare the
results for three tile dispatch strategies. The first approach is
in order and is the baseline. The second strategy sorts the tile
pairs based on the sum of the number of non-zeros in the two
inputs. Finally, the third approach dynamically dispatches data
whenever a region of the accelerator is finished. This requires
duplicating input data in our global buffer, but achieves the
highest performance, 1.76× faster than no unrolling. Figure 21
shows a 1.6× improvement in performance for sparse matrix
multiplication with unrolling.

As described in Section IV-C, tiling can have a significant
effect on performance. Smaller tiles perform less computation
on the array but are faster and reduce the ratio of kernel
acceleration to the processor overhead of reconfiguring the
global buffer. Figure 21 shows our most performant results
when we run an exhaustive tiling sweep before and after
unrolling the application. Performing the tiling sweep after
unrolling is slightly better since the ratio of kernel time to
processor time changes with unrolling.

2) Sparse vs. Dense Matrix Multiplication: For a 512×512
matrix multiplication with varying input sparsity, we compare
our dense accelerator configuration versus its sparse counter-
part in Figure 20. After 99% matrix sparsity, we should con-
figure our accelerator as a sparse accelerator. At 99.9% input
sparsity, we perform 30× better than the dense accelerator
configuration.

Given the data above in Figure 20, future work includes
improving primitive performance, supporting other dataflows
(for example, Gustavson’s algorithm [39]), and adding new
primitives to increase accelerator utilization. With these im-
provements, the sparse accelerator will perform better on less
sparse matrices.

3) Final Sparse Results: We evaluate our sparse tensor
algebra kernels on EDP versus a CPU (12-core Intel Xeon)
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TABLE IV: Comparison table.

This Work Amber JSSC 22 [10] Zhang VLSI 22 [42] Huang VLSI 22 [7]

Architecture SoC w/CGRA SoC w/CGRA CNN/Image Processing PE Array Sparsity-Aware CNN-GCN
Programmability ✓ ✓ ✓ ×

Sparse/Dense Sparse/Dense Dense Only Dense Only Sparse/Dense
Technology/Area 12 nm/23 mm2 16 nm/20.1 mm2 22 nm/8.8 mm2 28 nm/8.3 mm2

Formats Supported BFloat16, INT16 BFloat16, INT16 INT16 INT8
# of Cores 384 PEs, 1 M3 384 PEs, 1 M3 576 PEs, RISC Core, Custom M33 1024 8-bit MACs

Total SRAM 4.5 MB 4.5 MB 1428 KB, 2MB MRAM 292 KB
Voltage &
Frequency

0.78 V
@970 MHz

0.84 V @580 MHz
1.29 V @955 MHz

0.5 - 1.0 V
56 KHz - 190 MHz

10 - 200 MHz

Peak Performance (Normalized to
MAC=2OPs for all)

571 INT16 GOPS
@(0.78 V, 850 MHz)

367 INT16 GOPS
@(1.29 V, 955 MHz)

414 INT16 GOPS
@(1.0 V, 180 MHz)

Dense: 410 GOPS
Sparse: 3.3 TOPS

Peak Energy Efficiency (Normalized to
MAC=2OPs for all)

756 INT16 GOPS/W
@(0.66 V, 500 MHz)

538 INT16 GOPS/W
@(0.84 V, 580 MHz)

7.0 INT16 TOPS/W
@(0.5 V, 16 MHz)

Dense: 3.1 TOPS/W
Sparse: 25.1 TOPS/W
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using sparse libraries (Math Kernel Library (MKL) [40] and
TACO [19]). For single-core MKL baselines, we ran the library
with no optimizations enabled. For 12-core MKL+AVX, MKL
was configured and run with AVX512 and OMP enabled.
For the TACO baseline, we used default schedules for each
expression. In all baseline configurations, we take the median
runtime across 10 iterations.

Utilizing the scheduling optimizations described above, we
perform up to 5.2× better in EDP on sparse tensor algebra
expressions versus our VLSI submission [41] and 4.4− 565×
in EDP better versus CPUs with sparse libraries as shown
in Figure 22. Onyx excels in expressions with higher-order
tensors and multiple inputs, where we can leverage fusion to
outperform the baselines.

D. Related Work

Typically, fixed-function accelerators are used to acceler-
ate sparse workloads. For example, Huang et al. [7] target
augmented reality with dedicated sparse-CNN and sparse-
GCN engines but only support accelerating these two opera-
tions. Similarly, Song et al. [43] design several fixed-function
accelerators for 3D navigation, including a sparse matrix
multiplication engine, but do not accelerate full application
domains or exploit sparsity in other kernels.

Several other works focus on accelerating sparse kernels.
For example, [5], [44]–[46] optimize matrix-multiplications
over different levels of input sparsity, while [3], [47] support
operations on high-order tensors such as MTTKRP. Addi-
tionally, [4] supports tensor addition, but does not take full
advantage of sparse iteration for intersects/unions. Symphony
[48] is a sparse architecture that supports all of sparse tensor
algebra but has no hardware implementation. As opposed to
Onyx, none of these works have silicon results.

On the other hand, there are programmable accelerators
that support application domains, such as Feng et al. [10]
and Zhang et al. [42] (shown in Table IV). However, [10]
and [42] are limited to dense applications only and achieve
lower peak performance. There are several other works that
explore CGRA architectures [11], [49], [50], [8], [9], but they
focus solely on dense applications and only have simulation
or FPGA-based implementations.

VII. CONCLUSION

Onyx is a programmable SoC designed to accelerate both
dense and sparse applications. By increasing compute density
and optimizing across the memory hierarchy, we achieve
efficient performance and efficiency in both image processing
and machine learning workloads. With composable memory
and compute hardware primitives and an end-to-end sparse
compiler with scheduling optimizations, we accelerate any
sparse tensor algebra expression. As the first programmable
accelerator to support arbitrary dense or sparse applications,
Onyx demonstrates an approach to accelerating several appli-
cation domains on a unified hardware fabric.
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