THEME ARTICLE: HOT CHIPS 2024

Designing Programmable Accelerators for

Sparse Tensor Algebra

Kalhan Koul*, Zhouhua Xie*, Maxwell Strange, Sai Gautham Ravipati, Bo Wun Cheng, Olivia Hsu, Po-Han Chen,
Mark Horowitz, Fredrik Kjolstad, Priyanka Raina, Stanford University, Stanford, CA, 94305, USA

*Equal Contribution

Recent research has focused on leveraging sparsity in hardware accelerators

to improve the efficiency of applications spanning scientific computing to machine
learning. Most such prior accelerators are fixed-function, which is insufficient

for two reasons. First, applications typically include both dense and sparse
components, and second, the algorithms that comprise these applications are
constantly evolving. To address these challenges, we designed a programmable
accelerator called Onyx for both sparse tensor algebra and dense workloads.
Onyx extends a coarse-grained reconfigurable array (CGRA) optimized for dense
applications with composable hardware primitives to support arbitrary sparse
tensor algebra kernels. In this paper, we show that we can further optimize Onyx by
adding a small set of hardware features for parallelization that significantly increase
both temporal and spatial utilization of the CGRA, reducing runtime by up to 6.2x.

in the size of machine learning models. As a re-

sult, researchers have turned to sparsity to com-
press models and improve efficiency. Previous work
has developed dedicated fixed-function hardware ac-
celerators to exploit structured sparsity in end-to-end
applications' 2. For example, Huang et al.® developed
integrated dedicated accelerators for sparse convolu-
tional neural networks and sparse graph convolutional
networks on the same chip. There are also several
works that exploit unstructured sparsity in specific
kernels*, where the kernel is typically a matrix mul-
tiplication. The key issue with these approaches is
that end-to-end accelerators become obsolete after
new algorithms are designed, and fixed-function blocks
that only accelerate portions of end-to-end applications
leave performance on the table.

Programmable accelerators offer a promising so-
lution for applications with evolving algorithms. These
accelerators achieve significant energy efficiency ben-
efits compared to general-purpose computing® but
have typically focused only on dense applications.
One prior programmable accelerator, Capstan®, ac-
celerates sparse kernels, but does not fully leverage

I n the last decade, there has been a rapid growth

XXXX-XXX © 2025 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

Month

Published by the IEEE Computer Society

sparse iteration for unions and intersections. Modern
end-to-end applications have both dense and sparse
components’ and can benefit significantly from the
acceleration of both. Our work, Onyx®®, is the first
programmable fabric that supports both dense and
sparse acceleration. In dense mode, Onyx’s coarse-
grained reconfigurable array (CGRA) is optimized for
high parallelism, performing hundreds of multiply-adds
(or another operation) per cycle. In sparse mode, we
instead configure our accelerator to eliminate unnec-
essary memory accesses and ineffectual computation.
Onyx is the first programmable dataflow accelerator
that provides a functional design with domain com-
pleteness. In this paper, we propose techniques to
improve the spatial and temporal utilization of Onyx
for sparse applications. Our contributions include: (1)
hardware primitives for pipelining accelerator calls,
thereby increasing temporal utilization; and (2) hard-
ware primitives for broadcasting, filtering, and merging,
enabling parallelism and high spatial utilization. Finally,
we perform a detailed sweep across input matrix spar-
sities and (3) determine the optimal configuration for
matrix multiplication performance.

Accelerating arbitrary sparse tensor algebra expres-
sions requires a general abstraction that can be

Publication Name

Tensor Fibertree
Dimension j Level
~|0]1|0|O0 i
S[2o 3]0
2 Jj
QEJ o|jofo0|o0
alol4alo]s values

coordinates: coord, references: ref
Stream Format Storage Format

(coord S:Stop *denote fiber length

1 -

(coord DS;31]S;20[S,1]

e d
vals |DS,54|S,32|S,1

FIGURE 1. A 2D sparse tensor and its equivalent represen-
tations in the fibertree format, stream format, and storage
format.

mapped onto a programmable accelerator. We utilize
the fibertree abstraction'® from the sparse abstract
machine (SAM)'! work. Figure 1 shows how a tensor
can be represented as a fibertree. Each fibertree level
is a dimension of the tensor. Each level is made up
of fibers which are the groups of non-zero coordinates
highlighted in gray. In this example, we have the fiber
(0, 1, 3) at level j, indicating that rows 0, 1, and 3 have
nonzero values. Each coordinate has a reference, or a
pointer, to a child fiber at a lower level. The final level
of the fibertree contains the actual values in the matrix.

Abstract Machine

SAM describes a set of primitives that can operate
on fibertrees in stream and storage formats. We show
these formats for the example tensor in Figure 1. The
stop tokens (S;) represent the end of the fibers, and
the done tokens (D) represent the end of the streams.
Reference streams are used as pointers to fibers at
the next level. For example, the reference 0 in the J
reference stream points to the first fiber in the j level
storage, as shown by the blue arrow. Using reference
streams, our design can perform the indirect data ac-
cesses necessary in sparse applications. The storage
format consists of segment and coordinate arrays for
each tensor level except the last level, which stores
the value array. Segment arrays contain tuples that
denote the start and end of each fiber. For example, in
the i level storage, we have the tuple (0, 3) indicating
that the fiber consists of the first three coordinates.
Using the stream and storage formats shown here,

Publication Title

MEM Primitives
Level Buffer

Level Writer Level Scanner
input coord

DS,310

output coord

o
[%)
n
@
Q
3
o
3
=
n

(=]
=
w
(e}
o
o
3
(o
n

PE Primitives

Intersecter | Unioner |Coordinate; Reducer | Repeater
Dropper

(s,310) [s,10] s,2 Ji(s,421]) [s,21 |

[50320} [5031 } [So So } S, 0

~0)-

(5,30 |

O

(s;310) [s, Ji[s,7 Ji[s,00]

e

FIGURE 2. Memory tile sparse primitives showing conversion
of streams to storage and storage to streams. PE tile sparse
primitives showing intersecter, unioner, coordinate dropper,
reducer, and repeater.

our accelerator can perform operations, such as an
intersection or a union, on compressed tensors.

SAM primitives can be composed to evaluate any
sparse tensor algebra expression. There are three
memory and five processing primitives. The memory
primitives (Figure 2) include a level writer, which con-
verts streams to the storage representation, a level
buffer, which contains a memory wrapper to arbitrate
writes and reads to the SRAMs, and a level scanner,
which receives a reference and produces coordinate
and reference streams for lower-level fibers. The pro-
cessing primitives (Figure 2) include intersecters, coor-
dinate droppers, unioners, repeaters, and reducers. In-
tersecters consume incoming coordinate streams and
output the common coordinates, eliminating unneces-
sary memory accesses and computation. Intersecters
may produce empty fibers, so coordinate droppers
must remove existing coordinates with empty fibers
and their corresponding stop tokens at lower levels.
Unioners collect all incoming coordinates, for situations
like element-wise addition. The repeater duplicates
streams for broadcasting one tensor over another, and
the reducer performs a sum over a stream. With these
primitives, our design has the generality to evaluate
arbitrary sparse tensor algebra expressions''. Figure 3
demonstrates how the primitives described above com-
pose to compute matrix-vector multiplication.

This generality also allows us to accelerate expres-
sions with higher-order tensors and multiple inputs.
Our accelerator is particularly effective for complex
multi-input kernels that would produce intermediate

Month 2025

Matrix-Vector Multiplication (x,=X. Bucj) in SAM

[coord, vals I:ef_>
Level | [Level Level | I—'\7Coord|nate
Scanner ~-» Scanner -» Scanner —» Mul —7
_ B:vals | Dropper i,]

B:i) BIJ i

! ; P
' [Intersecter - T Level
A
1
1

SeEmnar (Reducer

(| Level | . cvals
| Repeater - » Scacf?f_‘er ™ Coordinate |
<l Dropper i, j

FIGURE 3. SAM graph for matrix-vector multiplication.

tensors, such as matricized tensor times Khatri-Rao
product (MTTKRP Xj = 3", BixCix Djs). Our work sup-
ports expression fusion over multiple inputs, which
allows the accelerator to avoid storing intermediate
tensors and eliminate any unnecessary computation
across all inputs. A fused implementation of MTTKRP
performs up to 11.8x faster than its unfused imple-
mentation on the same programmable fabric.

Architecture

The Onyx (Figure 4) system on chip (SoC) contains a
32x 16 CGRA of processing element and memory tiles,
a 4 MB global buffer (GLB), and an ARM M3 processor
subsystem. There are 384 processing element tiles
(PEs), each of which has an arithmetic logic unit (ALU),
a 64-byte register file, and the sparse processing
primitives described above. Additionally, there are 128
memory tiles (MEMs), each of which has 4 KB of
SRAM, address generation logic for dense applica-
tions, and the sparse memory primitives described
above. The CGRA has three columns of PE tiles for
each column of MEM tiles. The tiles are connected to
each other over a 17-bit ready-valid interconnect that
allows for routing in all directions. 16 bits are used
for data, and 1 bit is used to designate the control
tokens in the sparse streaming abstraction described
above. The GLB is composed of 16 tiles. Each tile has
two 128 KB SRAMSs, a bidirectional connection to the
top row of the CGRA, and a specialized network for
application configuration. The ARM M3 orchestrates
application acceleration, including data movement and
accelerator configuration, and performs any operations
not supported by the accelerator.

The composable memory and processing primitives
implemented in Onyx allow us to map any tensor alge-
bra expression onto our accelerator, but by themselves,

Month 2025

Onyx SoC Architecture

J

:‘[Global Buffer (GLB) Control

C

Processor | |>56ks|[256kB| [256KB|[256KB
32-bit GLB || GLB |+++| GLB || GLB
ARM CPU | | | Tileo | Tile1 Tile14 Tile15

32KB D-Cache

32KB I-Cache

Data/Configuration Network
& |

s ergne | SEHEL
4"{ 32KB SRAM

64-bit System Interconnect

{

[Processing Element Tile [[] Memory Tile =E= Interconnect

Onyx Die Photo Onyx Specifications

HA | Tech GF 12nm FinFet
Area 23 mm?
of Cells 25 million
| |n Processor ARM-M3 CPU
3 | Voltage 0.78 V
3 Freq. (M3) 500 MHz

Freq. (CGRA) 970 MHz
; GLB Capacity |4 MB (256KBx 16)
'ly | MEM Capacity 512 KB (4KBx128)

FIGURE 4. Onyx SoC block diagram showing the CGRA, the
global buffer (GLB), and the ARM M3 processor subsystem.
Onyx die photo and specifications.

they do not achieve high temporal or spatial utilization
of the accelerator. CPU overhead between accelerator
calls results in low temporal utilization, leading to low
performance. To improve temporal utilization, we im-
plement tile pipelining, which allows us to overlap the
loading of the next tile of data with the processing of the
current tile. Low spatial utilization of the array of PEs
and MEMs also leads to low performance on Onyx.
To improve spatial utilization, we add three hardware
primitives to the array that allow us to maximally unroll
applications on our accelerator: a stream filter, an
arbiter, and an output address generator. We describe
these optimizations in detail in the rest of this section.

Tile Pipelining

One crucial consideration when accelerating tensor
algebra is efficiently mapping large tensors onto con-
strained on-chip memories. For example, in the case
of a large matrix multiplication, an input matrix may
exceed the size of available memory. Therefore, like
other push-memory accelerators, we tile input matrices
into smaller chunks and accelerate those chunks in-
dividually to produce partial results. Onyx accelerated

Publication Title

FIGURE 5. Overlapping execution by pipelining tensor tiles
onto our accelerator.

each individual tile pair with one kernel call. This meant
that for very sparse tensors, a significant portion of the
application runtime was spent on CPU cycles for accel-
erator management and not on actual computation. To
improve runtime, we implemented tile pipelining, which
pipelines the tiled execution of a large tensor operation
onto and off of the accelerator.

We introduce new features to both the memory
and processing primitives to enable tile pipelining.
For the memory primitives, we design the level buffer
as a depth-two FIFO of levels (Figure 5), where the
reads and writes are handled by two separate state
machines that never operate on the same level si-
multaneously. When reading and writing a level, the
two state machines each maintain their own base and
bound registers for their respective memory segments.
When a write finishes, the write state machine pushes
the base and bound to a level status FIFO and updates
the write base register with the starting address of
the next available line. When a read finishes and
the level status FIFO is not empty, the read state
machine pops the FIFO to get the base and bound
for the next level to read. This mechanism allows us
to overlap the processing of one pair of tiles with the
next. Additionally, all processing primitives return to an
idle state after receiving a done token, which ensures
proper sequencing of unrelated streams.

Unrolling

Unrolling a kernel on Onyx is constrained by the
number of input and output links from the GLB to the
CGRA, which can be a maximum of 16 each way in
the Onyx design. To determine the number of links
used by a sparse tensor algebra expression, we can

Publication Title

PE Tile 4KB MEM Tile PE Tile
o | [e | |
Write
PE Tile 4KB MEM Tile PE Tile
o | [
Write Read
PE Tile 4KB MEM Tile PE Tile
- — D
Write Read

Input GLB
Tiles

Output GLB
Tiles
7 ’

Stream Arbiter
: Output GLB
Tiles

Input GLB
Tiles

— 1 SAM Graph
L 1 ! Copy N

Time-

-) Output Address
multiplexed Stream Filter

Generator

FIGURE 6. CGRA showing the three key primitives needed to
enable application unrolling: stream filter, arbiter, and output
address generator.

analyze the input and output tensor dimensions for
the expression. For example, matrix multiplication has
two input matrices and one output matrix, where each
matrix’s fibertree has three levels. This expression
would use six GLB inputs and three GLB outputs. This
means we can only accelerate two matrix multiplies in
parallel, resulting in very low spatial utilization of the
accelerator. To fix this limitation, we time-multiplex our
GLB outputs (accelerator inputs) and arbitrate our GLB
inputs (accelerator outputs). To accomplish this, we
add stream filter, arbiter, and output address generator
primitives to our design as shown in Figure 6. These
primitives allow us to place several copies of the
same kernel on our accelerator simultaneously, greatly
improving array utilization and performance.

The stream filter (Figure 7) is placed in the level
writer. It sends data from one GLB output to several
memory tiles. First, we add a configuration register
to each memory tile that contains an identifier (ID).
Then, we prepend our GLB output streams with that
ID to signify which memory tiles should capture the
incoming stream. This allows us to time-multiplex our
GLB outputs in a single accelerator call.

SAM graphs mapped onto the accelerator may
complete execution in any order since their runtime is

Month 2025

Stream Filter

Output Address Generator

Stream Arbiter

1 1
' ' GLB
1| Level Level Scanner | Level | Input
! ' Scanner] >
GLB i Buffer IOutputs I
, <Tread req |—> GLB !
output i Input/ . Requests
1 . 1
Ready | Arbiter 1 Level GLB
N i || TR | Scanner FSM Ready
. | Output
H ! Readys
| H Grants T
1 ‘ ‘ 1
1 1
1 1
1 1

T
config: ID

T T
config: base_addr stride

|
config: number of requests

FIGURE 7. Diagram of added primitives for unrolling. The stream filter shows interaction with GLB and level writer. The output
address generator shows interaction with level buffer and GLB. The arbiter shows the interaction with level scanner and GLB.

data-dependent. Therefore, we implement an inverse
of the stream filter in the level scanner to write the
output tiles coming out of these graphs in the correct
order in the GLB. Specifically, we add two configu-
rations to each memory tile: a maximum output size
and stride. The maximum output size determines the
spacing between outputs, and the stride is the number
of simultaneously accelerated kernels. An output ad-
dress generator (Figure 7) uses these configurations to
reserve fixed-size blocks in the GLB. The level scanner
prepends the generated address to the output stream
for the GLB, signaling the output write location.

The arbiter (Figure 7) allows us to collect outputs
from different level scanners and route them to the
GLB. We implement round-robin arbitration to ensure
fairness and prevent starvation. The stream arbiter
reuses the same FIFOs and four input ports as the
other PE processing primitives to save area. For sce-
narios with an unrolling factor greater than 4, arbiters
are hierarchically assembled by the compiler. With the
stream filter and output address generator primitives
described above, we can now maximally unroll our
sparse applications. Unrolling significantly improves
accelerator utilization as shown in Figure 8. For the
applications shown, the utilization increases by up to
7.5x%.

Hardware Overhead

We synthesize the design (in Intel 16 technology)
both without and with the new hardware features. Our
design contributions increase the PE tile area by 0.86%
and the memory tile area by 0.56%. The significant
runtime improvements shown in the next section justify
the marginal area added by the additional primitives.

Month 2025

PE Utilization
Il Before unrolling [l After unrolling
80%
60%
40%
20%
0%
N Q
‘?66 s *9&\ Q\Q\ ’& ’éﬁ\ € <&
PPN S %\é
F K K < $
MEM Utilization
B Before unrolling [After unrolling
100%
75%
50%
25%
0%
N S >
vcg’ & 2 @é\"\ SIS < é\ﬁ*g
&

FIGURE 8. PE and MEM tile utilization before and after
enabling maximal unrolling. Further unrolling is prevented by a
lack of memory tiles or failures in application place and route.

Publication Title

SpMSpM Runtime (millions of cycles)

5 Before tile
4 pipelining

[l SoC [CGRA
After tile
pipelining ﬁ I
o X

giulp bcsstm26 tols2000 west2021 progas

o NW

FIGURE 9. Improvements in both SoC and accelerator run-
times using tile pipelining.

Runtime Results

We use an end-to-end sparse compiler® to map sparse
kernels onto our CGRA. For 2D input tensors, we
evaluate sparse matrix-sparse matrix multiplication
(SpMSpM) on 5 SuiteSparse'? matrices (~2000x2000
with 99.0 - 99.5% sparsity). For 3D input tensors,
we evaluate MTTKRP, an expression from scientific
computation, on 5 randomly generated sparse tensors
(98% uniform random sparsity, ~100x200x200). We
implemented our design in Verilog, and the runtime re-
sults are derived from RTL simulations that incorporate
estimated processor overheads.

Tile pipelining allows us to significantly improve
runtime by both reducing SoC overheads and over-
lapping the execution of consecutive tiles. Figure 9
shows runtime improvements on the five SuiteSparse
matrices. SoC overhead drops by up to 31.7x as we
no longer manage acceleration at the memory tile size,
but instead at the global buffer tile size. Additionally,
the accelerator runtime reduces by up to 1.41x as well
because we can overlap the execution of different tiles.

Unrolling improves runtime significantly by accel-
erating several kernels in parallel. To understand the
benefits and limitations of unrolling, we show SpMSpM
and MTTKRP runtimes on a single tensor each in
Figure 10. For SpMSpM on the matrix giulp, with an
unroll factor of 7, we see a 4.6 x runtime improvement.
For MTTKRP on a randomly generated tensor with
98% sparsity, with an unroll factor of 7, we see a 3.2x
runtime improvement.

There are two reasons for not achieving an ideal
speedup: load imbalance and limited global buffer
bandwidth. First, since the runtime of individual kernels
is data-dependent, we run into load balancing issues
(as shown in Figure 10 for SpMSpM). There are sev-
eral possible strategies for load balancing, which we
leave as future work. Another reason for not achieving
an ideal speedup when unrolling is limited GLB band-
width (as shown in Figure 10 for MTTKRP). When data
transfer to the accelerator takes longer than the exe-
cution, more unrolling does not improve runtime and

Publication Title

SpMSpM Runtime (millions of cycles)
B Measured runtime M Ideal runtime

Load imbalance
in kernel inputs

1.25
1.00
0.75
0.50
0.25
0.00

1 2 3 4 5 6 7
Unrolling Factor

MTTKRP Runtime (cycles)
B Measured runtime M Ideal runtime

300000
Limited GLB

200000 bandwidth

100000

Unrolling Factor

FIGURE 10. SpMSpM and MTTKRP runtime results with
different unrolling factors.

SpMSpM Total Runtime (millions of cycles)

2.0 1.8x

1.5

3.4x
1.0

0.5

0.0

Onyx + Tile Pipelining + Unrolling

MTTKRP Total Runtime (millions of cycles)
0.4

3.1x
0.3

0.2
0.1 2.0x

0.0 — e

Onyx + Tile Pipelining + Unrolling

FIGURE 11. SpMSpM and MTTKRP runtime results after tile
pipelining and unrolling.

wastes accelerator resources. Future work can explore
identifying the bottlenecks for a given expression and
utilizing free global buffer links to reduce runtime.
Figure 11 shows runtime improvements on SpM-
SpM and MTTKRP, respectively, after both optimiza-
tions are performed. We perform 6.1 x better on matrix

Month 2025

SpMSpM Runtime (ms)
@® Sparse accelerator == Dense accelerator

10 ° a o o

] --ooo..g?,_.lx*
0.1 a
0.01

8081828384858687 888990919293 94 9596 97 98 99
Sparsity (%)

Graph Convolutional Network Layers (ps)

1000
100

10
1_-I.-

SpMSpM SpMSpM SpMM RelU + GEMM
SpMM

FIGURE 12. Runtime comparison of sparse and dense ac-
celerator configurations for matrix multiplication and runtime
of GCN layers on a 100-node graph.

multiplication and 6.2x better on MTTKRP than the
baseline Onyx.

Figure 12 (top) shows runtime results for a
512x512 matrix multiplication for different input data
sparsities for our CGRA configured as a dense accel-
erator and as a sparse accelerator. After 89% sparsity,
configuring the CGRA to be a sparse accelerator is
advantageous. At 99% sparsity, the sparse acceler-
ator performs 23.1x better than the dense acceler-
ator, and at 99.9% sparsity it performs 165x bet-
ter. Figure 12 (bottom) shows runtime results for a
graph convolutional network (GCN) comprising several
sparse and dense layers demonstrating how our CGRA
can accelerate end-to-end applications. Future work
includes exploring different matrix multiplication sched-
ules (i.e. inner product vs. Gustavson’s algorithm),
different tiling schemes, and further optimizing GLB—
accelerator bandwidth.

Our work explores improving state-of-the-art sparse
kernel acceleration on programmable fabrics. Com-
pared against the same kernels and schedules in prior
work, we achieve up to 15x better spatial utiliza-
tion and up to 6.2x runtime improvement. Our work
makes significant progress in improving performance
for sparse inputs and enables mapping end-to-end
applications that can leverage both sparse and dense
acceleration on the same accelerator fabric.

Month 2025

This work was supported by the DARPA DSSoC grant,
the Stanford AHA Agile Hardware Center and Affili-
ates Program, Intel's Science and Technology Center
(ISTC), Stanford SystemX Alliance, SRC JUMP 2.0
PRISM Center, NSF CAREER Award (2238006), Hell-
man Faculty Scholar Program, Apple Stanford EE PhD
Fellowship, and NSF GRFP.

1. A. Parashar, M. Rhu, A. Mukkara, A. Puglielli,
R. Venkatesan, B. Khailany, J. Emer, S. W.
Keckler, and W. J. Dally, “SCNN: An accelerator
for ~ compressed-sparse convolutional neural
networks,” in Proc. 2017 ACM/IEEE 44th Ann.
Int. Symp. Comput. Archit. (ISCA), 2017, pp. 2740,
doi:10.1145/3079856.3080254.

2. S. Song, D. Han, S. Kim, S. Kim, G. Park, and H.-J.
Yoo, “GPPU: A 330.4-uJ/task neural path planning pro-
cessor with hybrid GNN acceleration for autonomous
3D navigation,” in Proc. 2023 IEEE Symp. VLSI Tech-
nol. Circuits, 2023, pp. 1-2, doi: 10.23919/VLSITech-
nologyandCir57934.2023.10185367.

3. W.-C. Huang, |.-T. Lin, W.-C. Chen, L.-Y. Lin, N.-S.
Chang, C.-P. Lin, C.-S. Chen, and C.-H. Yang, “A
28-nm 25.1 TOPS/W sparsity-aware CNN-GCN
deep learning SoC for mobile augmented reality,” in
Proc. 2019 Symp. VLSI Circuits, 2022, pp. 42—43,

doi:10.1109/VLSITechnologyandCir46769.2022.9830261.

4. Y. Yang, J. S. Emer, and D. Sanchez, “Trapezoid:
A versatile accelerator for dense and sparse matrix
multiplications,” in Proc. 2024 ACM/IEEE 51st Ann.
Int. Symp. Comput. Archit. (ISCA), 2024, pp. 931-945,
doi:10.1109/ISCA59077.2024.00072.

5. K. Feng, T. Kong, K. Koul, J. Melchert, A. Carsello, Q.
Liu, G. Nyengele, M. Strange, K. Zhang, A. Nayak,
J. Setter, J. Thomas, K. Sreedhar, P.-H. Chen, N.
Bhagdikar, Z. A. Myers, B. D’Agostino, P. Joshi, S.
Richardson, C. Torng, M. Horowitz, and P. Raina, “Am-
ber: A 16-nm system-on-chip with a coarse-grained re-
configurable array for flexible acceleration of dense lin-
ear algebra,” IEEE J. Solid-State Circuits, vol. 58, no.
4, pp. 1-13, 2023, doi:10.1109/JSSC.2023.3313116.

6. A. Rucker, M. Vilim, T. Zhao, Y. Zhang, R. Prabhakar,
and K. Olukotun, “Capstan: A vector RDA for spar-
sity,” MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 1022—-1035,
doi:10.1145/3466752.3480047.

7. S. Dave, R. Baghdadi, T. Nowatzki, S. Avan-
cha, A. Shrivastava, and B. Li, “Hardware accel-
eration of sparse and irregular tensor computa-

Publication Title

tions of ML models: A survey and insights,” Proc.
IEEE, vol. 109, no. 10, pp. 1706-1752, 2021,
doi:10.1109/JPROC.2021.3098483.

8. K. Koul, M. Strange, J. Melchert, A. Carsello, Y. Mei,
O. Hsu, T. Kong, P.-H. Chen, H. Ke, K. Zhang, Q.
Liu, G. Nyengele, A. Balasingam, J. Adivarahan, R.
Sharma, Z. Xie, C. Torng, J. Emer, F. Kjolstad, M.
Horowitz, and P. Raina, “Onyx: A 12nm 756 GOPS/W
coarse-grained reconfigurable array for accelerating
dense and sparse applications,” in Proc. 2024
IEEE Symp. VLSI Technol. Circuits, 2024, pp. 1-2,

doi:10.1109/VLSITechnologyandCir46783.2024.10631383.

9. K. Koul, M. Strange, J. Melchert, A. Carsello, Y. Mei, O.
Hsu, T. Kong, P-H. Chen, H. Ke, K. Zhang, Q. Liu, G.
Nyengele, A. Balasingam, J. Adivarahan, R. Sharma,
Z. Xie, C. Torng, J. Emer, F. Kjolstad, M. Horowitz,
and P. Raina, “Onyx: A programmable accelerator for
sparse tensor algebra," in 2024 IEEE Hot Chips 36
Symposium (HCS), Stanford, CA, USA, 2024, pp. 1-
91, doi: 10.1109/HCS61935.2024.10665150.

10. V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer,
Efficient Processing of Deep Neural Networks. Morgan
& Claypool Publishers, 2020.

11. O. Hsu, M. Strange, R. Sharma, J. Won, K.
Olukotun, J. S. Emer, M. A. Horowitz, and F.
Kjolstad, “The sparse abstract machine,” in Proc.
28th ACM Int. Conf. Archit. Support for Program.
Lang. Oper. Syst. (ASPLOS), 2023, pp. 710-726,
doi:10.1145/3582016.3582051.

12. T. A. Davis and Y. Hu, “The University of Florida
sparse matrix collection,” ACM Transactions on Math-
ematical Software (TOMS), vol. 38, no. 1, pp. 1-25,
2011.

Kalhan Koul is an Electrical Engineering Ph.D. stu-
dent at Stanford University. He received an M.S. in
Electrical Engineering from Stanford University in 2021.
His research interests are in accelerators and agile
hardware design. Contact him at kkoul@stanford.edu.

Zhouhua Xie is an undergraduate student at Stan-
ford University. His research interests include domain-
specific hardware architectures and hardware-software
co-design. Contact him at xzh015@stanford.edu.

Maxwell Strange is an Electrical Engineering Ph.D.
student at Stanford University. He received an M.S.
in Electrical Engineering from Stanford University in
2020. His research interests include domain-specific
hardware architectures, hardware-software co-design,
and embedded systems design. Contact him at
mstrange@stanford.edu.

Publication Title

Sai Gautham Ravipati is an Electrical Engineer-
ing M.S. student at Stanford University. He received
a B.Tech. degree in Electrical Engineering from the
IIT Madras in 2023. His research interests include
programming systems, domain-specific compilers, and
hardware-software co-design. Contact him at sgau-
tham@stanford.edu.

Bo Wun Cheng is an Electrical Engineering Ph.D.
student at Stanford University. He received an M.S. in
Computer Science from National Tsing Hua University
(Taiwan) in 2023. His research interests are in reconfig-
urable accelerators and accelerator memory systems.
Contact him at bwcheng@stanford.edu.

Olivia Hsu is a Computer Science Ph.D. student at
Stanford University. She received a B.S. in Electrical
Engineering and Computer Science from the Univer-
sity of California, Berkeley in 2019. Her research in-
terests include accelerator architectures, programming
systems, and domain-specific compilers. Contact her at
owhsu@stanford.edu.

Po-Han Chen is an Electrical Engineering Ph.D. stu-
dent at Stanford University. He received his M.S. in
Electrical Engineering from National Tsing Hua Uni-
versity (Taiwan) in 2018. His research interests in-
clude coarse-grained reconfigurable arrays (CGRAS)
and high-performance and energy-efficient computing
platforms. Contact him at pohan@stanford.edu.

Mark Horowitz is the Yahoo! Founders Professor at
Stanford University and chair of the electrical engineer-
ing department. He is an IEEE fellow, an ACM fellow,
and a member of the National Academy of Engineering
and the American Academy of Arts and Science. He
received a Ph.D. from Stanford University in 1984.
His current research includes updating both analog
and digital design methods, agile hardware design,
and applying engineering to biology. Contact him at
horowitz@ee.stanford.edu.

Fredrik Kjolstad is an Assistant Professor of Com-
puter Science at Stanford University. He received a
Ph.D. degree in Computer Science from the Mas-
sachusetts Institute of Technology in 2020. His re-
search interests include sparse computing, compilers,
and programming models and languages. Contact him
at kjolstad@stanford.edu.

Priyanka Raina is an Assistant Professor of Electri-

cal Engineering at Stanford University. She received
a Ph.D. in Electrical Engineering and Computer Sci-

Month 2025

ence from MIT in 2018. Her research interests are
in domain-specific hardware architectures and agile
hardware—software codesign methodology. Contact her
at praina@stanford.edu.

Month 2025 Publication Title

	THE ONYX CHIP
	Abstract Machine
	Architecture

	UTILIZATION OPTIMIZATIONS
	Tile Pipelining
	Unrolling

	EVALUATION
	Hardware Overhead
	Runtime Results

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	REFERENCES
	Biographies
	Kalhan Koul
	Zhouhua Xie
	Maxwell Strange
	Sai Gautham Ravipati
	Bo Wun Cheng
	Olivia Hsu
	Po-Han Chen
	Mark Horowitz
	Fredrik Kjolstad
	Priyanka Raina

