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Recent research has focused on leveraging sparsity in hardware accelerators

to improve the efficiency of applications spanning scientific computing to machine
learning. Most such prior accelerators are fixed-function, which is insufficient

for two reasons. First, applications typically include both dense and sparse
components, and second, the algorithms that comprise these applications are
constantly evolving. To address these challenges, we designed a programmable
accelerator called Onyx for both sparse tensor algebra and dense workloads.
Onyx extends a coarse-grained reconfigurable array (CGRA) optimized for dense
applications with composable hardware primitives to support arbitrary sparse
tensor algebra kernels. In this paper, we show that we can further optimize Onyx by
adding a small set of hardware features for parallelization that significantly increase
both temporal and spatial utilization of the CGRA, reducing runtime by up to 6.2x.

in the size of machine learning models. As a re-

sult, researchers have turned to sparsity to com-
press models and improve efficiency. Previous work
has developed dedicated fixed-function hardware ac-
celerators to exploit structured sparsity in end-to-end
applications' 2. For example, Huang et al.® developed
integrated dedicated accelerators for sparse convolu-
tional neural networks and sparse graph convolutional
networks on the same chip. There are also several
works that exploit unstructured sparsity in specific
kernels*, where the kernel is typically a matrix mul-
tiplication. The key issue with these approaches is
that end-to-end accelerators become obsolete after
new algorithms are designed, and fixed-function blocks
that only accelerate portions of end-to-end applications
leave performance on the table.

Programmable accelerators offer a promising so-
lution for applications with evolving algorithms. These
accelerators achieve significant energy efficiency ben-
efits compared to general-purpose computing® but
have typically focused only on dense applications.
One prior programmable accelerator, Capstan®, ac-
celerates sparse kernels, but does not fully leverage

I n the last decade, there has been a rapid growth
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sparse iteration for unions and intersections. Modern
end-to-end applications have both dense and sparse
components’ and can benefit significantly from the
acceleration of both. Our work, Onyx®®, is the first
programmable fabric that supports both dense and
sparse acceleration. In dense mode, Onyx’s coarse-
grained reconfigurable array (CGRA) is optimized for
high parallelism, performing hundreds of multiply-adds
(or another operation) per cycle. In sparse mode, we
instead configure our accelerator to eliminate unnec-
essary memory accesses and ineffectual computation.
Onyx is the first programmable dataflow accelerator
that provides a functional design with domain com-
pleteness. In this paper, we propose techniques to
improve the spatial and temporal utilization of Onyx
for sparse applications. Our contributions include: (1)
hardware primitives for pipelining accelerator calls,
thereby increasing temporal utilization; and (2) hard-
ware primitives for broadcasting, filtering, and merging,
enabling parallelism and high spatial utilization. Finally,
we perform a detailed sweep across input matrix spar-
sities and (3) determine the optimal configuration for
matrix multiplication performance.

Accelerating arbitrary sparse tensor algebra expres-
sions requires a general abstraction that can be
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FIGURE 1. A 2D sparse tensor and its equivalent represen-
tations in the fibertree format, stream format, and storage
format.

mapped onto a programmable accelerator. We utilize
the fibertree abstraction'® from the sparse abstract
machine (SAM)'! work. Figure 1 shows how a tensor
can be represented as a fibertree. Each fibertree level
is a dimension of the tensor. Each level is made up
of fibers which are the groups of non-zero coordinates
highlighted in gray. In this example, we have the fiber
(0, 1, 3) at level j, indicating that rows 0, 1, and 3 have
nonzero values. Each coordinate has a reference, or a
pointer, to a child fiber at a lower level. The final level
of the fibertree contains the actual values in the matrix.

Abstract Machine

SAM describes a set of primitives that can operate
on fibertrees in stream and storage formats. We show
these formats for the example tensor in Figure 1. The
stop tokens (S;) represent the end of the fibers, and
the done tokens (D) represent the end of the streams.
Reference streams are used as pointers to fibers at
the next level. For example, the reference 0 in the J
reference stream points to the first fiber in the j level
storage, as shown by the blue arrow. Using reference
streams, our design can perform the indirect data ac-
cesses necessary in sparse applications. The storage
format consists of segment and coordinate arrays for
each tensor level except the last level, which stores
the value array. Segment arrays contain tuples that
denote the start and end of each fiber. For example, in
the i level storage, we have the tuple (0, 3) indicating
that the fiber consists of the first three coordinates.
Using the stream and storage formats shown here,
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FIGURE 2. Memory tile sparse primitives showing conversion
of streams to storage and storage to streams. PE tile sparse
primitives showing intersecter, unioner, coordinate dropper,
reducer, and repeater.

our accelerator can perform operations, such as an
intersection or a union, on compressed tensors.

SAM primitives can be composed to evaluate any
sparse tensor algebra expression. There are three
memory and five processing primitives. The memory
primitives (Figure 2) include a level writer, which con-
verts streams to the storage representation, a level
buffer, which contains a memory wrapper to arbitrate
writes and reads to the SRAMs, and a level scanner,
which receives a reference and produces coordinate
and reference streams for lower-level fibers. The pro-
cessing primitives (Figure 2) include intersecters, coor-
dinate droppers, unioners, repeaters, and reducers. In-
tersecters consume incoming coordinate streams and
output the common coordinates, eliminating unneces-
sary memory accesses and computation. Intersecters
may produce empty fibers, so coordinate droppers
must remove existing coordinates with empty fibers
and their corresponding stop tokens at lower levels.
Unioners collect all incoming coordinates, for situations
like element-wise addition. The repeater duplicates
streams for broadcasting one tensor over another, and
the reducer performs a sum over a stream. With these
primitives, our design has the generality to evaluate
arbitrary sparse tensor algebra expressions''. Figure 3
demonstrates how the primitives described above com-
pose to compute matrix-vector multiplication.

This generality also allows us to accelerate expres-
sions with higher-order tensors and multiple inputs.
Our accelerator is particularly effective for complex
multi-input kernels that would produce intermediate
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FIGURE 3. SAM graph for matrix-vector multiplication.

tensors, such as matricized tensor times Khatri-Rao
product (MTTKRP Xj = 3", BixCix Djs). Our work sup-
ports expression fusion over multiple inputs, which
allows the accelerator to avoid storing intermediate
tensors and eliminate any unnecessary computation
across all inputs. A fused implementation of MTTKRP
performs up to 11.8x faster than its unfused imple-
mentation on the same programmable fabric.

Architecture

The Onyx (Figure 4) system on chip (SoC) contains a
32x 16 CGRA of processing element and memory tiles,
a 4 MB global buffer (GLB), and an ARM M3 processor
subsystem. There are 384 processing element tiles
(PEs), each of which has an arithmetic logic unit (ALU),
a 64-byte register file, and the sparse processing
primitives described above. Additionally, there are 128
memory tiles (MEMs), each of which has 4 KB of
SRAM, address generation logic for dense applica-
tions, and the sparse memory primitives described
above. The CGRA has three columns of PE tiles for
each column of MEM tiles. The tiles are connected to
each other over a 17-bit ready-valid interconnect that
allows for routing in all directions. 16 bits are used
for data, and 1 bit is used to designate the control
tokens in the sparse streaming abstraction described
above. The GLB is composed of 16 tiles. Each tile has
two 128 KB SRAMSs, a bidirectional connection to the
top row of the CGRA, and a specialized network for
application configuration. The ARM M3 orchestrates
application acceleration, including data movement and
accelerator configuration, and performs any operations
not supported by the accelerator.

The composable memory and processing primitives
implemented in Onyx allow us to map any tensor alge-
bra expression onto our accelerator, but by themselves,
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FIGURE 4. Onyx SoC block diagram showing the CGRA, the
global buffer (GLB), and the ARM M3 processor subsystem.
Onyx die photo and specifications.

they do not achieve high temporal or spatial utilization
of the accelerator. CPU overhead between accelerator
calls results in low temporal utilization, leading to low
performance. To improve temporal utilization, we im-
plement tile pipelining, which allows us to overlap the
loading of the next tile of data with the processing of the
current tile. Low spatial utilization of the array of PEs
and MEMs also leads to low performance on Onyx.
To improve spatial utilization, we add three hardware
primitives to the array that allow us to maximally unroll
applications on our accelerator: a stream filter, an
arbiter, and an output address generator. We describe
these optimizations in detail in the rest of this section.

Tile Pipelining

One crucial consideration when accelerating tensor
algebra is efficiently mapping large tensors onto con-
strained on-chip memories. For example, in the case
of a large matrix multiplication, an input matrix may
exceed the size of available memory. Therefore, like
other push-memory accelerators, we tile input matrices
into smaller chunks and accelerate those chunks in-
dividually to produce partial results. Onyx accelerated
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FIGURE 5. Overlapping execution by pipelining tensor tiles
onto our accelerator.

each individual tile pair with one kernel call. This meant
that for very sparse tensors, a significant portion of the
application runtime was spent on CPU cycles for accel-
erator management and not on actual computation. To
improve runtime, we implemented tile pipelining, which
pipelines the tiled execution of a large tensor operation
onto and off of the accelerator.

We introduce new features to both the memory
and processing primitives to enable tile pipelining.
For the memory primitives, we design the level buffer
as a depth-two FIFO of levels (Figure 5), where the
reads and writes are handled by two separate state
machines that never operate on the same level si-
multaneously. When reading and writing a level, the
two state machines each maintain their own base and
bound registers for their respective memory segments.
When a write finishes, the write state machine pushes
the base and bound to a level status FIFO and updates
the write base register with the starting address of
the next available line. When a read finishes and
the level status FIFO is not empty, the read state
machine pops the FIFO to get the base and bound
for the next level to read. This mechanism allows us
to overlap the processing of one pair of tiles with the
next. Additionally, all processing primitives return to an
idle state after receiving a done token, which ensures
proper sequencing of unrelated streams.

Unrolling

Unrolling a kernel on Onyx is constrained by the
number of input and output links from the GLB to the
CGRA, which can be a maximum of 16 each way in
the Onyx design. To determine the number of links
used by a sparse tensor algebra expression, we can
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FIGURE 6. CGRA showing the three key primitives needed to
enable application unrolling: stream filter, arbiter, and output
address generator.

analyze the input and output tensor dimensions for
the expression. For example, matrix multiplication has
two input matrices and one output matrix, where each
matrix’s fibertree has three levels. This expression
would use six GLB inputs and three GLB outputs. This
means we can only accelerate two matrix multiplies in
parallel, resulting in very low spatial utilization of the
accelerator. To fix this limitation, we time-multiplex our
GLB outputs (accelerator inputs) and arbitrate our GLB
inputs (accelerator outputs). To accomplish this, we
add stream filter, arbiter, and output address generator
primitives to our design as shown in Figure 6. These
primitives allow us to place several copies of the
same kernel on our accelerator simultaneously, greatly
improving array utilization and performance.

The stream filter (Figure 7) is placed in the level
writer. It sends data from one GLB output to several
memory tiles. First, we add a configuration register
to each memory tile that contains an identifier (ID).
Then, we prepend our GLB output streams with that
ID to signify which memory tiles should capture the
incoming stream. This allows us to time-multiplex our
GLB outputs in a single accelerator call.

SAM graphs mapped onto the accelerator may
complete execution in any order since their runtime is
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FIGURE 7. Diagram of added primitives for unrolling. The stream filter shows interaction with GLB and level writer. The output
address generator shows interaction with level buffer and GLB. The arbiter shows the interaction with level scanner and GLB.

data-dependent. Therefore, we implement an inverse
of the stream filter in the level scanner to write the
output tiles coming out of these graphs in the correct
order in the GLB. Specifically, we add two configu-
rations to each memory tile: a maximum output size
and stride. The maximum output size determines the
spacing between outputs, and the stride is the number
of simultaneously accelerated kernels. An output ad-
dress generator (Figure 7) uses these configurations to
reserve fixed-size blocks in the GLB. The level scanner
prepends the generated address to the output stream
for the GLB, signaling the output write location.

The arbiter (Figure 7) allows us to collect outputs
from different level scanners and route them to the
GLB. We implement round-robin arbitration to ensure
fairness and prevent starvation. The stream arbiter
reuses the same FIFOs and four input ports as the
other PE processing primitives to save area. For sce-
narios with an unrolling factor greater than 4, arbiters
are hierarchically assembled by the compiler. With the
stream filter and output address generator primitives
described above, we can now maximally unroll our
sparse applications. Unrolling significantly improves
accelerator utilization as shown in Figure 8. For the
applications shown, the utilization increases by up to
7.5x%.

Hardware Overhead

We synthesize the design (in Intel 16 technology)
both without and with the new hardware features. Our
design contributions increase the PE tile area by 0.86%
and the memory tile area by 0.56%. The significant
runtime improvements shown in the next section justify
the marginal area added by the additional primitives.
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FIGURE 8. PE and MEM tile utilization before and after
enabling maximal unrolling. Further unrolling is prevented by a
lack of memory tiles or failures in application place and route.
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FIGURE 9. Improvements in both SoC and accelerator run-
times using tile pipelining.

Runtime Results

We use an end-to-end sparse compiler® to map sparse
kernels onto our CGRA. For 2D input tensors, we
evaluate sparse matrix-sparse matrix multiplication
(SpMSpM) on 5 SuiteSparse'? matrices (~2000x2000
with 99.0 - 99.5% sparsity). For 3D input tensors,
we evaluate MTTKRP, an expression from scientific
computation, on 5 randomly generated sparse tensors
(98% uniform random sparsity, ~100x200x200). We
implemented our design in Verilog, and the runtime re-
sults are derived from RTL simulations that incorporate
estimated processor overheads.

Tile pipelining allows us to significantly improve
runtime by both reducing SoC overheads and over-
lapping the execution of consecutive tiles. Figure 9
shows runtime improvements on the five SuiteSparse
matrices. SoC overhead drops by up to 31.7x as we
no longer manage acceleration at the memory tile size,
but instead at the global buffer tile size. Additionally,
the accelerator runtime reduces by up to 1.41x as well
because we can overlap the execution of different tiles.

Unrolling improves runtime significantly by accel-
erating several kernels in parallel. To understand the
benefits and limitations of unrolling, we show SpMSpM
and MTTKRP runtimes on a single tensor each in
Figure 10. For SpMSpM on the matrix giulp, with an
unroll factor of 7, we see a 4.6 x runtime improvement.
For MTTKRP on a randomly generated tensor with
98% sparsity, with an unroll factor of 7, we see a 3.2x
runtime improvement.

There are two reasons for not achieving an ideal
speedup: load imbalance and limited global buffer
bandwidth. First, since the runtime of individual kernels
is data-dependent, we run into load balancing issues
(as shown in Figure 10 for SpMSpM). There are sev-
eral possible strategies for load balancing, which we
leave as future work. Another reason for not achieving
an ideal speedup when unrolling is limited GLB band-
width (as shown in Figure 10 for MTTKRP). When data
transfer to the accelerator takes longer than the exe-
cution, more unrolling does not improve runtime and
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FIGURE 10. SpMSpM and MTTKRP runtime results with
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FIGURE 11. SpMSpM and MTTKRP runtime results after tile
pipelining and unrolling.

wastes accelerator resources. Future work can explore
identifying the bottlenecks for a given expression and
utilizing free global buffer links to reduce runtime.
Figure 11 shows runtime improvements on SpM-
SpM and MTTKRP, respectively, after both optimiza-
tions are performed. We perform 6.1 x better on matrix
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FIGURE 12. Runtime comparison of sparse and dense ac-
celerator configurations for matrix multiplication and runtime
of GCN layers on a 100-node graph.

multiplication and 6.2x better on MTTKRP than the
baseline Onyx.

Figure 12 (top) shows runtime results for a
512x512 matrix multiplication for different input data
sparsities for our CGRA configured as a dense accel-
erator and as a sparse accelerator. After 89% sparsity,
configuring the CGRA to be a sparse accelerator is
advantageous. At 99% sparsity, the sparse acceler-
ator performs 23.1x better than the dense acceler-
ator, and at 99.9% sparsity it performs 165x bet-
ter. Figure 12 (bottom) shows runtime results for a
graph convolutional network (GCN) comprising several
sparse and dense layers demonstrating how our CGRA
can accelerate end-to-end applications. Future work
includes exploring different matrix multiplication sched-
ules (i.e. inner product vs. Gustavson’s algorithm),
different tiling schemes, and further optimizing GLB—
accelerator bandwidth.

Our work explores improving state-of-the-art sparse
kernel acceleration on programmable fabrics. Com-
pared against the same kernels and schedules in prior
work, we achieve up to 15x better spatial utiliza-
tion and up to 6.2x runtime improvement. Our work
makes significant progress in improving performance
for sparse inputs and enables mapping end-to-end
applications that can leverage both sparse and dense
acceleration on the same accelerator fabric.
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