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Abstract
Dynamic behaviors are becoming prevalent in tensor applica-
tions, like machine learning, where many widely used mod-
els contain data-dependent tensor shapes and control flow.
However, the limited expressiveness of prior programming
abstractions for spatial dataflow accelerators (SDAs) forces
these dynamic behaviors to be implemented statically and/or
unoptimized. To address these challenges, we present Stream-
ing Tensor Programs (STeP), a streaming abstraction that
enables dynamic tensor workloads to run efficiently on SDAs.
STeP introduces flexible routing operators, an explicit mem-
ory hierarchy, and symbolic-shape semantics that expose
dynamic data rates and tensor dimensions. These capabili-
ties unlock new optimizations, like dynamic tiling, dynamic
parallelization, and configuration time-multiplexing, that
adapt SDA execution to dynamic behaviors while preserving
dataflow efficiency. Using a cycle-approximate simulator on
representative LLM layers and a full model with real-world
traces, STeP enables: dynamic tiling that breaks the Pareto-
optimal frontier from prior work, dynamic parallelization
that improves latency by ∼2.72x, and configuration time-
multiplexing that increases compute utilization by ∼2.64x
over prior SDA abstractions and their implementations.
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1 Introduction
The widespread use of compute- and memory-intensive ten-
sor applications has increased the demand for performant
hardware backends. This need for performance now drives
the widespread adoption of high-throughput, highly par-
allel machines (like GPUs and dataflow architectures) for
many tensor workloads, particularly large language models
(LLMs) [21, 37, 41, 57]. Under such circumstances, Spatial
Dataflow Accelerators (SDAs) [12, 20, 33–35, 38] are emerg-
ing as a promising hardware architecture. SDAs are reconfig-
urable architectures composed of spatially distributed com-
pute and memory units. By mapping computation onto a
spatial fabric of pipelined compute and memory units, SDAs
avoid several control overheads and enable aggressive oper-
ator fusion, pipelining, and fine-grained parallelism. Prior
work has empirically demonstrated that these architectural
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Abstraction Data
Flow

Explicit
Data
Rate

Explicit
Memory
Hierarchy

Dynamic
Routing

& Merging

Dynamic
On-chip
Tiling

Spatial [18] ✗ ✗ ✓ ✗ ✗

Revet [38] ✗ ✗ ✓ ✓ (limited) ✗

StreamIt [46] ✓ ✓ ✗ ✗ ✗

SAM [15] ✓ ✗ ✗ ✓ (limited) ✓ (limited)
Ripple [11] ✓ ✗ ✗ ✓ ✗

STeP ✓ ✓ ✓ ✓ ✓

Table 1. Landscape of programming abstractions for SDAs

features enable SDAs to outperform state-of-the-art GPUs
while delivering higher energy efficiency [5, 19, 39].

However, unlike the ample software support for static
workloads on SDAs, existing SDA programming abstractions
have limited support for accelerating dynamic workloads, as
shown in Table 1. The importance of supporting dynamic be-
haviors is increasing inmanywidely used tensor applications
due to data-dependent tensor dimensions [31, 32, 42, 50] and
control flow [8, 27, 52]. Many such dynamic workloads can
be characterized as asynchronously executing blocks with
corresponding communication. This characterization aligns
well with the execution model of SDAs, where compute and
memory units run asynchronously and communicate via
hardware FIFOs. As such, current SDA abstractions leave
performance on the table even though the SDA hardware
itself naturally maps well to these workloads.

Most existing SDA programming abstractions fall into ei-
ther imperative or dataflow-based designs. While imperative
abstractions [12, 18, 38, 56] offer high generality, dataflow
designs, such as StreamIt [46], SAM [15], and Ripple [11],
have emerged as they align better with the hardware’s execu-
tion model. However, they do not model an explicit memory
hierarchy, and many were designed for a specific domain,
limiting their ability to capture the broader range of dynamic
tensor workloads. SAM is limited to sparse tensor algebra
kernels, and StreamIt adopts a synchronous dataflow model,
making it challenging to express dynamic behaviors. Rip-
ple adopts a design based on asynchronous blocks that can
contain arbitrary imperative code. However, Ripple leaves
the memory hierarchy implicit, making it difficult to express
and discover efficient implementations of many important
applications whose performance is dominated by data move-
ment across the memory hierarchy [1, 8, 27, 43, 47, 52]. Fur-
thermore, opaque data rates at the abstraction level require
lifting the imperative code within each asynchronous block
to analyze the program in terms of data rates.

To address the limitations of prior SDA dataflow abstrac-
tions in expressing and optimizing dynamism, we propose
Streaming Tensor Programs (STeP), a new streaming abstrac-
tion for accelerating dynamic tensor applications on SDAs.
STeP expresses data as streams, where tiles and buffers in

the stream can have dynamic shapes. It consists of asyn-
chronous dataflow blocks that provide three key properties:
explicit memory hierarchy, symbolic data consumption and
production rate, and data-dependent control flow operators.
These properties give STeP unique capabilities that are

unavailable in prior abstractions for SDAs. First, STeP cap-
tures performance-critical metrics such as off-chip traffic,
on-chip memory requirement, and operational intensity at
the abstraction level. We show how STeP provides insight
into memory-bound tensor applications and validate the cap-
tured metrics with a cycle-accurate simulator (Section 4).
STeP also enables expressing optimizations such as dynamic
tiling, configuration time-multiplexing, and dynamic par-
allelization (Section 5), which are not expressible in prior
abstractions for SDAs. We evaluate each optimization on rep-
resentative layers from open-source LLMs with real-world
traces using a cycle-approximate simulator. Our evaluation
shows that these optimizations break the Pareto-optimal
frontier from prior work by delivering speedups and/or re-
source savings. Specifically, dynamic tiling delivers a Pareto
Improvement Distance [9, 26, 51]1 of 1.33×∼2.11×; Configu-
ration time-multiplexing delivers 2.51×∼2.64× higher com-
pute utilization; Dynamic parallelization achieves 1.14×∼
2.72× speedup. We also evaluate the optimizations on end-
to-end models, achieving upto 1.27× speedup while using
69% less on-chip memory and 54% fewer compute resources
on Qwen3-30B-A3B. Lastly, we discuss future compilation
to STeP and approaches for supporting the dynamic features
of STeP in SDA hardware (Section 6).

Overall, our contributions are:
• An asynchronous dataflow abstraction for SDAs (STeP)
with first-class support for dynamism (Section 3).

• A symbolic system based on STeP’s shape semantics
to extract performance-critical metrics (Section 4).

• Optimizations that exploit the dynamic features and
explicit memory hierarchy of STeP (Section 5) and an
outline of how those abstract dynamic features would
be supported in SDA hardware (Section 6).

• A performance and resource utilization investigation
on the impact of dynamic optimizations enabled by
STeP on representative LLM applications (Section 5).

2 Background
This section provides background on the application, hard-
ware, and programming abstractions discussed in this paper.

2.1 Dynamism in Machine Learning (ML)
Although dynamism appears inmany tensor applications, we
will use ML workloads to illustrate real-world examples of
dynamic behavior throughout this paper. ModernMLmodels
exhibit diverse forms of dynamism and represent one of the

1The Pareto Improvement Distancemeasures the distance from a new design
point 𝑝 to a reference Pareto frontier 𝑃 . For more detail, see Section 5.2.
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most widely used tensor applications. ML workloads also
demand high-throughput hardware backends, making them
a primary driver for accelerators.

A prominent source of dynamism in recent ML workloads
is the heavy use of data-dependent control flow. Mixture-
of-Experts (MoE) is a model architecture where a subset
of parameters, called experts, are activated for each input
activation. With every top-ranked open-source model now
adopting the MoE architecture [6, 13, 23, 23, 43–45, 52],2 effi-
ciently handling such control flow has become increasingly
important. ML workloads also frequently exhibit dynam-
ic/ragged tensor shapes, driven by runtime parameters such
as the number of requests, input resolution, and sequence
length [32, 42, 50, 58]. Data-dependent control flow further
amplifies this by making expert input shapes data-dependent.

2.2 Spatial Dataflow Accelerators
Spatial dataflow accelerators [12, 20, 35, 38, 48, 49] are pro-
grammable architectures with spatially distributed hardware
resources. A typical SDA consists of an array of reconfig-
urable compute units and memory units that communicate
via hardware FIFOs and a network-on-chip. Instead of execut-
ing a sequential instruction stream as in the von Neumann
model, SDAs represent programs as dataflow graphs, where
nodes denote operations and edges represent explicit data
dependencies. The nodes in a dataflow program graph are
mapped to distributed compute and memory units, and the
edges are mapped to hardware FIFOs and network-on-chip.
The storage in SDAs is organized into multiple tiers, such as
local PE storage, on-chip memory units, and off-chip mem-
ory. Most SDAs rely on the compiler or runtime to explicitly
orchestrate and schedule the data movement from one stor-
age tier to another [14, 18].
These architectural features allow SDAs to avoid the in-

struction decode, cache hierarchy, and control-flow diver-
gence overheads of general-purpose processors and GPUs.
Their dataflow execution model further enables aggressive
operator fusion, pipelining, and fine-grained parallelism,
which reduces off-chip memory traffic and synchronization
overhead. Prior work shows that these advantages translate
into both higher performance and energy efficiency com-
pared to state-of-the-art GPUs [5, 19, 39]. For example, GPUs
utilize less than half of their peak HBM bandwidth on Llama-
3.1-8B and Llama-3.1-70B workloads (Figure 1), whereas the
SN40L [33]—a recent commodity SDA—achieves a higher
fraction of peak HBM bandwidth during token generation.
As this phase is heavily memory-bound, SN40L attains up to
a 2× speedup with half the peak HBM bandwidth (SN40L-8)
and a 3.7× speedup with comparable bandwidth (SN40L-
16) [5, 19]. Beyond throughput, SDAs also deliver higher
task-level energy efficiency: the SN40L achieves 3.8× and

2According to https://lmarena.ai/leaderboard, accessed on Nov. 12, 2025.
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Figure 1. Comparison of SDAs versus GPUs. We express
the effective bandwidth of each platform as solid bars, with
slashed background bars indicating its peak HBM bandwidth.
Effective bandwidth is calculated using Roofline modeling
and the percentage of peak throughput reported by [19]. 3

4.6× higher Intelligence per Joule than NVIDIA B200 GPUs
for Qwen3-32B and GPT-OSS-120B, respectively [39].

2.3 Programming Abstractions for SDAs
SDAs can be programmed with either an imperative [12, 18,
38] or a dataflow programming abstraction [11, 15, 46] as
listed in Table 1. While imperative abstractions offer high
generality, they enforce a sequential instruction order, which
makes it challenging to exploit the inherent parallelism in the
application [56]. Furthermore, they lack explicit primitives
for asynchronous execution or queueing, which are crucial
for optimizing dynamic workloads.
Spatial [18] is an imperative programming abstraction for
FPGAs and SDAs. It uses nested loops and provides explicit
control over the memory hierarchy. However, control flow
is only permitted in restricted regions of the program, and
all memory constructs must be statically sized. Further-
more, transforming imperative loops into dataflow graphs
that can be mapped to hardware introduces complexity
in the compiler [56], and potentially results in suboptimal
schedules.

Revet [38] is an imperative programming abstraction and
compiler for expressing irregular applications on SDAs. It
supports more flexible data-dependent control flow than
Spatial via new dynamic primitives. However, its Dataflow
Thread model restricts these primitives to scalars, which
limits data reuse and prevents vectorized or tiled compu-
tation. As a result, many large, memory-bound tensor ap-
plications in Revet are forced to use only static primitives
to achieve high performance. Revet also cannot dynam-
ically group scalar streams into dynamically sized tiles,
making it unable to express optimizations that combine
data-dependent control flow with dynamically-sized tiles.
Dataflow abstractions address these limitations with built-

in support for dataflow and queueing. However, prior work

3All models use a sequence length of 4K. GPU numbers were obtained by
executing the models using TensorRT-LLM. The figure is reproduced with
numbers from prior work with the original authors’ permission [19].

https://lmarena.ai/leaderboard
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either focuses only on a specific domain or lacks visibility and
control over performance-critical decisions in many dynamic
tensor applications. Throughout the paper, asynchronous
dataflow refers to an execution model in which dataflow
blocks execute without global synchronization, and each
block may exhibit dynamic data rates and latencies.
StreamIt [46] is a synchronous dataflow abstraction used
to map stream applications. It is not an abstraction dedi-
cated to SDAs and can be used to target various streaming
backends. Each node in the program graph has a fixed rate
for consuming and producing data in the stream. While
this design enables optimizations based on known data
rates, this limits its ability to capture dynamic applications.

SAM [15] is the first asynchronous streaming tensor ab-
straction for SDAs. It introduces a clean dataflow model
with primitives that can express the full space of sparse
tensor algebra computations as streaming dataflow graphs.
However, SAM is limited to sparse tensor operators, mak-
ing it well-suited for exploring sparse workloads but not
for dense dynamic tensor applications.

Ripple [11] is an asynchronous dataflow abstraction and
architecture that expresses the asynchronous pipeline par-
allelism enabled by SDAs. It has an implicit memory hier-
archy and offers high generality by representing programs
as asynchronous blocks that can contain any imperative
code. While this model is sufficient for graph analytics
and sparse workloads with inherently low reuse, dynamic
tensor applications, such as dense ML, exhibit high tem-
poral and spatial reuse. Therefore, visibility and explicit
control over data movement across the memory hierarchy
are crucial for performance; the lack of such control makes
it challenging to analyze and express efficient schedules.
Furthermore, its design makes the data rates of each asyn-
chronous block opaque, requiring the compiler to infer
them from the imperative code.

3 Streaming Tensor Programs
Streaming Tensor Programs (STeP) is a streaming abstraction
for dynamic applications running on SDAs. In this section,
we describe its stream representation and operators.

3.1 Stream-centric Design
As an asynchronous dataflow model, STeP uses streams
as the primary representation for data. Each stream has a
compile-time determined rank and data type.

Data Type. The data type of a stream can either be a tile,
a selector, a reference to on-chip memory, or a tuple of these
data types. A tile is a two-dimensional regular matrix. STeP
allows tiles to have dynamically defined shapes. Support-
ing dynamically-sized tiles is crucial for maximizing data
reuse without excessive on-chip memory requirements when
tiling tensors with runtime-determined shapes. A selector is
a multi-hot vector, which can express various routing and

merging operators to support control flow (Section 3.2.3).
STeP also enables read-only reference (i.e. addresses) to on-
chip memory as a stream data type (Section 3.2.2). The flexi-
bility in data type enables lowering STeP to a broader range
of SDAs more easily. For example, when the stream data type
is restricted to only scalars, it cannot be directly mapped to
SDAs with tiled processing units like systolic arrays without
complicated lifting (e.g. auto-vectorization).

Stop Tokens. STeP streams are logically equivalent to zero
or more tensors. STeP streams embed the logical structure
of the corresponding tensor into the data stream through
stop tokens. STeP uses a similar stop token design to that
of SAM [15] as it was designed for asynchronous dataflow
abstractions and allows for dimensions to be dynamic. The
end of each dimension of the corresponding tensor is anno-
tated with a stop token 𝑆𝑁 (𝑁 ≥ 1), where 𝑁 denotes the
rank of that dimension (e.g. 𝑁 = 1 denotes the end of a vec-
tor) and at the end of multiple dimensions, STeP only emits
the highest-level stop token. The Done token (𝐷) at the end
indicates stream termination.

Stream Shape. The logical correspondence between a
tensor and a STeP stream provides a foundation for defin-
ing shape semantics for streams. These semantics enable
analyses and optimizations and improve debuggability by
exposing dataflow block behaviors at the tensor level. Unlike
the shape semantics of streams in synchronous dataflow [46],
which are straightforward due to fixed data rates, the shape
semantics in asynchronous dataflow require careful design.
Each STeP stream has a rank which is determined by

the dimensionality of the corresponding tensor(s) in the
stream. A rank-𝑁 stream with a data type T is a stream of
zero or more N-dimensional tensors of T and has a shape
[𝐷𝑁 , · · · , 𝐷1, 𝐷0]. Throughout the remainder of this section,
we will use red, gray, and black to denote the shape of the
stream, the stream’s data type, and the tensor, respectively.
STeP allows each 𝐷𝑖 to be either a static-regular, a dynamic-
regular, or a ragged dimension. A dimension is dynamic-
regular if its shape is a data-dependent constant. A dimension
is ragged if its shape can be various values (e.g. inner-most
dimension in example 1). A ragged dimension may be either
dynamic or static, depending on whether its set of values
is data-dependent. We will refer to either dynamic-regular
or dynamic-ragged dimensions as dynamic dimensions. The
shape of dynamic-regular and ragged dimensions are ex-
pressed as equations and symbols (e.g. 𝐷0 in example 1).

1, 2, 𝑆1, 3, 𝑆2, 4, 𝑆1, 5, 6, 7, 𝑆2, 𝐷 Shape: [2, 2, 𝐷0] (1)

Ragged dimensions have an absorbing property in the
equations. If a dimension’s shape equation contains a ragged
dimension, that dimension will be treated as a new ragged
dimension. For instance, when the inner-two dimensions are
flattened in example (1), the resulting stream shape is [2, 𝐷 ′

0]
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instead of [2, 2×𝐷0] where 𝐷 ′
0 is a newly introduced symbol

for the new ragged dimension.
Certain STeP operators have restrictions on stream or

data type shapes. Regular dimensions are more constrained
than ragged dimensions, and static dimensions are more
constrained than dynamic dimensions.4 Thus, if the operator
accepts a dimension of a certain type, it also accepts more
restrictive dimension types.

3.2 STeP Operators
STeP’s operators fall into five categories: (1) off-chip mem-
ory operators that stream tiled tensors between off-chip and
on-chip memory; (2) on-chip memory operators that convert
between streams and on-chip buffers; (3) dynamic routing
and merging operators that implement data-dependent con-
trol flow; (4) higher-order operators that apply functions
over stream elements; and (5) shape operators that modify
stop tokens to change the stream’s logical tensor structure.5

3.2.1 Off-chipMemory Operators. Off-chip memory op-
erators express the interface between on-chip and off-chip
memory. Coupledwith shape semantics, the off-chipmemory
operators can capture metrics such as off-chip memory traf-
fic and operational intensity, exposing performance-critical
metrics to the programmer or compiler.
LinearOffChipLoad As shown in Figure 2, this operator
loads an input tensor with a specific shape (in_mem_shape)
from off-chip memory to on-chip memory in tiles. It sup-
ports affine reads of the stored tensor using the stride and
the shape arguments. The operator takes in a reference
stream that controls how the stored tensor is repeatedly
read. The reference stream’s shape can contain any type
of dimensions (static/dynamic-regular, and ragged). For
each element in the reference stream, an affine read over
the tensor is triggered (the correspondence is shown with
black bold lines in Figure 2). Because the reference stream
serves as a trigger, its contents do not matter.

LinearOffChipLoad
in_mem_shape=(64,256)

tile_shape=(64,64)
stride_tiled=(4,1)
shape_tiled=(1,4)

Ref.

64
256

Stream Shape: [D1,1,4]

Stored Tensor
...Viewed TensorOutput Tensor

D1

Tile Shape:        [64,64]
[D1]

S2...D S2...D

Tile

Figure 2. An example of a LinearOffChipLoad operator. The
stored tensor is read in a row-major order 𝐷1 times, where
𝐷1 is the shape of a dynamic dimension. The stride and shape
are expressed in terms of tiles. Therefore, the output stream
shape is [𝐷1, 64//64, 256//64] = [𝐷1, 1, 4].

4Regularity and data-dependence are orthogonal.
5Supplementary syntax and shape semantics are provided in the Appendix.

LinearOffChipStore linearly stores the input stream’s tiles
to off-chip memory at the given address.

RandomOffChipLoad & RandomOffChipStore support
random access to tensors stored in off-chip memory. Both
take the base address, tile shape, and the in-memory tensor
shape as arguments. As inputs, the RandomOffChipLoad
operator has a read address stream, and the RandomOf-
fChipStore has awrite address stream andwrite data stream.

3.2.2 On-chip Memory Operators. These operators al-
low programs to leverage on-chip scratchpads and avoid
off-chip memory accesses or recomputation. This expressive-
ness exposes a large design space of implementations that
trade off on-chip memory usage against off-chip traffic.
Bufferize stores portions of the stream to on-chip memory
in linear order and outputs a stream of buffers (a read-only
reference to the allocated on-chip memory). The stream of
buffers created by Bufferize becomes the input to Streamify,
where any control-flow operator or shape operator (except
Reshape) can be inserted between the two. The amount
of data to be stored in on-chip memory is determined by
the bufferize rank argument. As shown in Figure 3, STeP
allows the bufferized inner dimensions to be dynamic-
regular dimensions and the outermost bufferize dimension
can be a dynamic-ragged dimension.

Buff1

D S2
Bufferize

tile_shape=(16,16)
bufferize_rank=2Stream Shape: [2,Dragged,2]

Tile

Memory

D Buff2 Buff1

[2]
S2... ...

......

Buff1 Shape:
[Dragged,2]

Streamify
tile_shape=(16,16)

stride=N/A
shape=(Dragged,2)

Stream
Shape : [2,Dreg,Dragged,2] Ref.[2,Dreg]

...

S2...
Dreg

S3... S3 D...
S1 DS1...

Input[2]

......
...

......

Figure 3. Bufferize stores the input stream tiles to on-chip
memory until it sees a stop token larger than or equal to
the bufferize rank. Then, a buffer is enqueued to the output
stream, and the operator begins accumulating into a new
on-chip memory (location).

Streamify supports reading data stored in on-chip memory
by a dynamic number of times using a reference stream as
shown in Figure 3. When the buffer shape contains only
static-regular dimensions, it supports affine reads over
the buffer using its stride and shape arguments (similar
to LinearOffChipLoad); otherwise, it linearly streams the
tensor referenced by each buffer.

3.2.3 Dynamic Routing andMergingOperators. These
operators capture the essential routing and merging patterns
to express data-dependent control flow and dynamic paral-
lelism efficiently. STeP’s dynamic routing and merging op-
erators allow for flexible data types, while many prior SDA
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D S1 X   
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...

t=3 t=1 t=0

D S2 Z Z S1 Y Y S2 X S1 W W W

Figure 4. An example of Reassemble. The figure expresses
multi-hot vectors in the selector stream as tuples of the in-
dices of the nonzero elements. W-Z are data values.

abstractions [18, 38, 46] either lack support altogether or
only support it under specific restrictions that significantly
limit available parallelism.
Reassemble merges data from many input streams based
on the selector stream, as shown in Figure 4. The input
streams must all have the same rank, which is the reassem-
ble rank b (In Figure 4, b=1). On every multi-hot vector
in the selector stream, data up to the first 𝑆𝑏 from the se-
lected input stream is merged to the output stream. When
multiple input streams are selected by the multi-hot vec-
tor (selector), data is collected in the order the input is
available. For the second multi-hot selector (0, 7) in Fig-
ure 4, data is collected from input stream 7 first. While
routing inputs from one expert to the output stream, in-
put streams don’t get interleaved even though the other
selected stream becomes available (e.g. in 𝑡 = 1). After col-
lecting data from all selected input streams, the operator
adds a new dimension by incrementing the stop token.

EagerMerge is similar to Reassemble except that it collects
data in the order they arrive. The operator has two output
streams: the data stream and the selector stream, which
denotes the index of the input stream from which each
chunk of the stream was collected. For the input streams
of Figure 4, EagerMerge will output the data stream in
𝑊 → 𝑌 → 𝑋 → 𝑍 or 𝑌 →𝑊 → 𝑋 → 𝑍 order.

Partition is the inverse of Reassemble and routes data up
to the first 𝑆𝑏 from the input stream to the selected output
streams (𝑏 is the partition rank).

3.2.4 Higher-order Operators. These operators take a
function supported by the hardware as an argument.
Accum reduces over multiple inner dimensions of a stream.
The operator takes the reduction rank, an initialization
function, and an update function as arguments. Accum
can express higher-order reductions by using an accumula-
tor tile that is larger than the input tile. Similar to Figure 3,
the accumulator for Accum can have a dynamic size. To-
gether with Bufferize, this capability enables maximizing
data reuse while using minimal on-chip memory when the
application involves dynamically-sized tensors (we discuss
related optimizations in Section 5.2).

Scan is similar to Accum but emits the state of the accu-
mulator on every input element. Therefore, the input and
output streams have the same shape.

Map applies element-wise functions without changing the
stream shape.

FlatMap expands each element in the stream to a stream
of rank b by applying the supplied function. The resulting
streams are concatenated into a single output stream.

3.2.5 Shape Operators. These operators only modify stop
tokens and do not alter the data contents of stream elements.
Flatten takes the indices of two dimensions, which specify
the range of dimensions that will be flattened.

Reshape splits a dimension into statically-sized chunks.
When splitting the inner-most dimension, the operator
takes in a padding value as an argument. The operator
has two output streams: the data stream and the padding
stream. The padding stream specifies whether each ele-
ment in the output data stream was padded.

Promote adds a new outermost dimension to the input
stream. Given an input stream’s outermost dimension 𝐷𝑎 ,
the new outermost dimension is (1 𝑖 𝑓 (𝐷𝑎 > 0) 𝑒𝑙𝑠𝑒 0) to
handle cases where the input stream is an empty stream.

Expand repeats each element in the input stream based on
the reference stream as shown in Figure 5.

D

Ex
pa
nd
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=2 [2,1,1]
S2S2
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S1S2S2

S1S2

Stream Shape: [2,Dragged,2]D

D S2In

Ref

Figure 5. The expand rank argument is set to the smallest
stop token level of the input stream. The output stream has
the same shape as the reference stream.

Zip groups two streams with the same shape into a single
stream with a tuple data type.

3.3 Putting it All Together: Simplified MoE
To demonstrate how STeP combines to implement dynamic
tensor applications, we will walk through a simplified MoE
example. For this example, we use a simplified two-expert
MoE layer, where each is a single matrix multiplication. Input
rows are dynamically routed to one of the two branches, and
their outputs are gathered back together after processing.
Figure 6 expresses the computation at the tensor level with
tiling, and Figure 7 expresses the corresponding STeP graph.
We will explain how the labelled operator regions in Figure 7
relate to the changes in the stream and the datatype shape.
Route: Partition takes in a [10,64] tensor, which is streamed
as a [10,1]-shaped stream of [1,64] tiles. The output
stream shapes are expressed symbolically as [𝐷𝑖,1] since
each (𝑖) branch receives a dynamic number of rows.
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[D1,64] [64,256] [⌈D1/4⌉*4,256] [10,256]Tensor: 
[10,64]

[D2,64] [64,256] [⌈D2/4⌉*4,256]

Stream:
  [10,1]

Datatype (Tile):
    [1,64] [D2, 1]

[ 1,64]
[⌈D2/4⌉,1,4]

[64,64] [4,64]
[⌈D2/4⌉,4]

[ 1,256]
[10,  1][⌈D2/4⌉]

[ 4,64]
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Route Pack 
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cast Compute
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Figure 6. A simplified tensor-level MoE expressed example. Bold black lines mark tile boundaries that are streamed in
row-major order. Black, dark red, and gray lists denote the shape of the tensor, stream, and the stream’s data type, respectively.
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Figure 7. The STeP graph for a simplified MoE. The back-
ground colors indicate corresponding regions in Figure 6.

1 partition = Partition(in_stream , selector ,

2 rank=1, num_consumers=N_ROUTED_EXPERTS)

3

4 expert_streams = []

5 for i in range(N_ROUTED_EXPERTS):

6 flatten_in = Flatten ((partition ,i),0,1)

7 reshape_to_tile = Reshape (...)

8 collect_rows = Accum (...)

9 collect_masks = Accum (...)

10 weight_load = LinearOffChipLoadRef(

11 ref=collect_rows ,

12 underlying=torch.randn(64,256),

13 stride =(4,1),

14 shape=(1,4),

15 tile_row=64, tile_col=256)

16 flatten_w = Flatten (...)

17 reshape_in = Reshape (...)

18 expand_in = Expand (...)

19 matmul_map = Map((expand_in , flatten_w),

20 map_fn.Matmul (), compute_bw=1024)

21 collect_cols = Accum (...)

22 retile_streamify = Flatmap (...)

23 expert_streams.append(retile_streamify)

24

25 output = Reassemble(expert_streams , selector

, rank=1)

26 output.stream.shape = in_stream.stream.shape

27 print(output.stream.shape)

Listing 1. The code snippet for Figure 7 written in STeP’s
symbolic Python frontend.

Pack to Tile: With [1,64] tile shapes, this region packs
them into [4,64] tiles to execute matrix-matrix multipli-
cation rather than multiple matrix-vector operations. To
do so, Flatten and Reshape first convert the stream shape

from [𝐷𝑖,1] to [⌈𝐷𝑖/4⌉,4]. To pack a dynamic number of
tiles in a stream into statically defined chunks, the Reshape
operator pads the stream with the given pad value, which
is [1,64] zero-value tiles. The tiles in the stream are then
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packed into a larger tile using the Accum operator with the
RetileRow function, which concatenates tiles row-wise.

Broadcast: Since the matrix multiplication will be in inner-
product dataflow order, each element in the input stream
has to be broadcast by the number of tiles in the column
dimension of the weight matrix. Therefore, we use Reshape
and Expand6 to do the stream shape conversion: [⌈𝐷𝑖/4⌉]
→ [⌈𝐷𝑖/4⌉,1]→ [⌈𝐷𝑖/4⌉,4].

Load weight: The weight matrix is tiled along the column
dimension and has to be loaded ⌈𝐷𝑖/4⌉ times. Since 𝐷𝑖 is
dynamically determined, wemust use a LinearOffChipLoad-
Ref and feed the output stream of Accum (shape: [⌈𝐷𝑖/4⌉])
to its reference stream. This invokes reading the weight
tensor ⌈𝐷𝑖/4⌉ times as a [1,4] stream of [64,64] tiles.

Compute: The matrix multiplication is done using a Map
operator as we do not tile the reduction dimension.

Pack Tile, Unpack Tile, & Merge: To merge the streams
in [1,256] tile granularity, Accumfirst packsmultiple tiles
horizontally and then each tile is split row-wise into multi-
ple smaller tiles using a FlatMap with the RetileStreamify
function. Lastly, Reassemble gathers [1,256] tiles based
on a selector stream.

4 Symbolic STeP Frontend and
Performance Model

In this section, we describe the programmability of STeP’s
symbolic frontend and how it combines with our simulator
to capture performance-critical metrics. We then present
the performance model used in the STeP cycle-approximate
simulator. We validate the metrics captured in the symbolic
frontend and the simulator against a cycle-accurate hardware
description language (HDL) simulation. Lastly, this section
contains a discussoin on how the symbolic frontend and
simulator can be adapted to target different SDAs.

4.1 Programmability of the Symbolic Frontend
Continuing with the example in Section 3.3, Listing 1 is the
equivalent code snippet for STeP’s symbolic Python frontend.
Writing programs in STeP is similar to writing programs in
PyTorch, but with schedules, such as parallelization, tiling,
and memory placement. Instead of PyTorch operators, the
programmer uses STeP operators, and the result of an op-
erator is a stream instead of a tensor. From the imperative
coding perspective, writing programs in STeP means giving
each instruction its own asynchronously executing loops
connected via streams.
STeP’s stream-centric design enables operator fusion by

construction and eliminates complicated compiler passes for
extracting parallelism from imperative code. However, as
tensors between operators are expressed as streams, both the
corresponding tensor shape and the stream shape (i.e., how
the elements in the tensor are being streamed) have to align
6All STeP operators with an input reference stream have a static variant.

between operators. STeP’s shape semantics enable the sym-
bolic frontend to internally verify that stream shapes align
between the producer and consumer, and allow programmers
to inspect the stream shape (see line 27 of Listing 1). Stream
shapes can also be used to exploit known program proper-
ties. For example, the new dynamic dimension introduced
by Reassemble can be substituted with the input stream’s
shape as shown in line 26 of Listing 1.

STeP provides two sets of memory operators (off-chip and
on-chip) with similar interfaces, allowing programmers to
select operators based on the desired memory placement.
For instance, line 10 of Listing 1 uses off-chip memory to
load weights, but if those weights are already resident in on-
chip memory, the operator can be replaced with Streamify.
Such visibility and control over the memory hierarchy enable
analyzing and exploring different tiling schemes, which are
a crucial scheduling knob for many tensor applications.

4.2 Analysis with Symbolic Shape Semantics
The symbolic frontend implements symbolic expressions for
off-chip memory traffic and on-chip memory requirements
for each operator using SymPy [28]. The total off-chip mem-
ory traffic and on-chip memory requirement of a program is
obtained by summing the expressions for every operator in
the program graph. Throughout this subsection, we use | |𝑋 | |
to denote the cardinality of a buffer or stream 𝑋 , defined as
the product of its dimension sizes. 𝑑𝑡𝑦𝑝𝑒 denotes data type,
and |𝑥 | to denote the size of a data type 𝑥 .

Off-chip Traffic. As the off-chip memory traffic only
occurs in off-chip memory operators (Section 3.2.1) the equa-
tion for other operators is zero, and the equation for off-chip
memory operators is:

| |𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑡𝑟𝑒𝑎𝑚 | | × |𝑜𝑢𝑝𝑢𝑡 𝑠𝑡𝑟𝑒𝑎𝑚 𝑑𝑡𝑦𝑝𝑒 |
If the target SDA assumes that no other STeP operators

spill to off-chipmemory, the summed off-chip traffic equation
represents the program’s total off-chip memory traffic and
can be used to compute operational intensity. Otherwise, it
provides a lower bound on off-chip traffic and thus an upper
bound on achievable operational intensity.

On-chip Memory Requirement. In our simulator, we
use the following equations for each operator. Other opera-
tors return zero because they can be fully streamed without
materialization.
Off-chip memory operators: |𝑜𝑢𝑡𝑝𝑢𝑡 𝑑𝑡𝑦𝑝𝑒 | × 2
Bufferize: |𝑖𝑛𝑝𝑢𝑡 𝑑𝑡𝑦𝑝𝑒 | + | |𝑏𝑢𝑓 𝑓 𝑒𝑟 | | × |𝑖𝑛𝑝𝑢𝑡 𝑑𝑡𝑦𝑝𝑒 | × 2
We multiply by two, assuming double buffering.

Accum, Scan, Expand: |𝑜𝑢𝑡𝑝𝑢𝑡 𝑑𝑡𝑦𝑝𝑒 |
Map, Accum with matrix multiplication:

(16 × 𝑖𝑛_𝑡𝑖𝑙𝑒_𝑐𝑜𝑙 + |𝑤𝑒𝑖𝑔ℎ𝑡 𝑡𝑖𝑙𝑒 | + |𝑜𝑢𝑡𝑝𝑢𝑡 𝑡𝑖𝑙𝑒 |)
The 𝑖𝑛_𝑡𝑖𝑙𝑒_𝑐𝑜𝑙 denotes the input tile’s innermost dimen-
sion size. The output tile size is included only for Accum.
We account for the storage of partial-input tiles and the
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full weight tile because we use inner-product matrix mul-
tiplication. We multiply by 16 to mirror the decomposition
of STeP-level tiles into 16 × 16 tiles that align with the
hardware’s compute-unit tile size.7

Handling data dependencies. When dynamic-regular or
ragged dimensions are present, the metrics produced by the
symbolic frontend include symbolic variables.8 By substitut-
ing these symbols with different input shapes or control-flow
decisions, programmers can quickly analyze off-chip traffic
and on-chip memory requirements.

The exact values for each metric are obtained by invoking
the simulator explained in the following subsection. The
symbolic frontend tracks operators whose metrics depend on
runtime data and enables off-chip traffic or on-chip memory
measurements for those operators during simulation. The
values from the symbolic frontend and the simulator are
then aggregated to produce the final concrete metrics.

4.3 Performance Model for the Simulator
Since the symbolic STeP frontend has no timing information,
we implement a simulator backend for STeP in Rust using
the Dataflow Abstract Machine [55] simulation framework.

To model the data transfer between off-chip memory and
on-chip memory, the simulator implements an HBM node
that emulates the timing behavior of Ramulator 2.0 [25], a
cycle-accurate DRAM simulator. The latency of accessing
on-chip memory is factored into the higher-order operators
that execute arithmetic functions, using Roofline modeling.
Each higher-order operator is allocated a compute bandwidth
(FLOPs/cycle). On each input element in the stream, the
operators increment cycles based on the following equation:

max( 𝑠𝑖𝑧𝑒 𝑜 𝑓 𝑖𝑛𝑝𝑢𝑡𝑠

𝑜𝑛-𝑐ℎ𝑖𝑝 𝑚𝑒𝑚 𝐵𝑊
,
𝑡𝑜𝑡𝑎𝑙 𝐹𝐿𝑂𝑃𝑠

𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝐵𝑊
,
𝑠𝑖𝑧𝑒 𝑜 𝑓 𝑜𝑢𝑡𝑝𝑢𝑡𝑠

𝑜𝑛-𝑐ℎ𝑖𝑝 𝑚𝑒𝑚 𝐵𝑊
)

As shown by the matmul_map in Listing 1, the 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝐵𝑊

is provided by the programmer, and 𝑡𝑜𝑡𝑎𝑙 𝐹𝐿𝑂𝑃𝑠 is computed
within the function supplied to the higher-order operators, as
this value depends on the specific computation the function
performs. The first and last entries in the equation are zero
when the input and output are streamed directly between
compute units via FIFOs.

4.4 Portability
As an abstraction, STeP is not tied to a specific hardware im-
plementation [15] and is portable across diverse SDA imple-
mentations with software-managed scratchpads [20, 33–35,
38, 48], which we discuss in Section 6.2. The equations in the
symbolic frontend can be customized to capture hardware-
specific operator details, such as hardware tile sizes and

7Refer to Section B.2 for more detail on hierarchical tiling.
8The symbolic frontend also introduces symbols for static ragged dimen-
sions, as explicitly tracking all ragged values would significantly increase
the complexity of metric computation.

matrix-multiplication implementation. If performance bot-
tlenecks shift, additional cost functions can be added to STeP
operators to obtain performance-correlated metrics (e.g. on-
chip traffic, compute). In the simulator, operator initiation
intervals and latencies can be adjusted to match hardware
characteristics [55]. For example, when multiple Bufferize
operators share an on-chip memory unit, a scratchpad sim-
ulator can replace the Roofline model to capture on-chip
memory contention. Also, different memory technologies
can be modeled by reconfiguring or replacing the simulator’s
HBM node [25].9

4.5 Validation
We validate the simulator by comparing the performance
to a cycle-accurate HDL simulation. We also compare the
off-chip traffic captured in the symbolic STeP frontend with
the performance to validate the usefulness of the metrics
captured in the symbolic frontend.
Workload and Hardware Model. We use a SwiGLU [40]
layer as the workload since it contains representative com-
putations in ML models such as matrix multiplication, acti-
vation function, and row-wise reduction. We choose a spa-
tial architecture of compute units that operate on 16 × 16
BFloat16 tiles, each having an initiation interval of one. We
pair compute tiles with distributed on-chip memory units,
each capable of reading and writing one tile per cycle.
The HDL model is implemented in Bluespec SystemVer-

ilog and executed in a cycle-accurate BlueSim simulator [3,
29]. Off-chip access delays are integrated using the Ramu-
lator2 library calls using a configuration of an HBM2 sub-
system with 8 stacks. The on-chip memory bandwidth is
configured as 256 (bytes/cycle), and the cycle-approximate
STeP simulator uses the same memory configurations. We
measure the total execution time from the first off-chip read
to the last off-chip write.
Mapping Methodology.We apply a graph transformation
to partition tiles into smaller physical tiles that match the
fabric’s compute tile size.10 After the transformation, every
node in the graph maps to a dedicated unit in the HDL de-
sign, which we attach to a congestion-free interconnect. The
programmer-specified compute bandwidth determines how
many compute units are mapped to each STeP node.
Results. As shown in Figure 8, the STeP simulator’s cycle-
count closely matches that of the HDL simulator, with a
Pearson correlation of 0.99, when sweeping different tile
sizes. As the application is memory-bound in the given hard-
ware configuration, decisions on data transfer across the
memory hierarchy significantly impact performance, high-
lighting the importance of having visibility and control over
these decisions in the abstraction. The high correspondence

9Detailed instructions for customizing the frontend and simulator can be
found in the artifact repository described in Section A.2.
10An example transformation is shown in Figure 18 in the Appendix.
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Figure 8. Cycle-count and memory traffic comparison of a
SwiGLU Layer with different tile sizes. The full sizes of the
batch dimension, hidden dimension, and MoE intermediate
dimension are 64, 256, and 512, respectively.

between the off-chip traffic captured in the symbolic STeP
frontend and the HDL simulator’s performance and incurred
off-chip traffic suggests that the metrics captured in the sym-
bolic frontend and the STeP simulator can provide valuable
insights into the performance of a given STeP graph.

5 Evaluation
In this section, we evaluate STeP’s ability to explore effi-
cient schedules for dynamic ML models by implementing
optimizations that were not expressible in prior abstractions
for SDAs. Key STeP features that enable each optimization
are listed in Table 2. Our evaluation shows that these op-
timizations enable Pareto-optimal design points over prior
work and deliver speedups or resource savings. To show how
the optimizations integrate with full LLM inference, we also
evaluate them on end-to-end models.

5.1 Methodology
Workload. Our workloads consist of two layers: Mixture-of-
Experts (MoE) with SwiGLU [40] experts and attention [47].
We focus on these layers because they dominate end-to-end
inference latency. For example, when running DeepSeek-
R1 on 64× B200 GPUs, attention and MoE layers together
account for approximately 80% of the total latency [54].
We use configurations from Qwen3-30B-A3B and Mixtral-
8x7B. We choose Qwen3-30B-A3B because it shares a com-
mon architecture with many of the top-20 open-source mod-
els [6, 8, 13, 23, 43–45, 52] on the LM Arena leaderboard [24].
Although Mixtral is relatively older, we include it to demon-
strate the impact of our optimizations across varied expert-
activation patterns in MoE models.
Dataset For the attention layer, the KV cache length for each
batch is sampled from the AzureLLMInference dataset [32].

Optimization Related STeP Features

Dynamic
Tiling

Dynamic tile shape
Explicit memory hierarchy

Accum of dynamically-sized tiles
Configuration

Time-multiplexing
Explicit memory hierarchy

Dynamic Routing and Merging Operators
Dynamic

Parallelization Dynamic Routing and Merging Operators

Table 2. Key STeP features that enable the optimizations
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Figure 9. Performance and memory requirements of tiling
strategies for the batch dimension of each expert (batch =
64). The numbers on the static tiling curve denote tile size.

For the MoE layer, we use expert-routing data collected by
running the models on the HH-RLHF [10] request traces.11
Simulator Setup. We use the STeP simulator descibed in
Section 4.3. The bandwidth of each on-chip memory unit is
set to 64 bytes/cycle, and the off-chip memory bandwidth
is set to 1024 bytes/cycle, matching the configurations of
recent reconfigurable dataflow accelerators [33, 35].
Baseline Design.We chose Revet [38] as our baseline since it
has themost extensive support for dynamic behaviors among
SDA programming abstractions with explicit memory hier-
archy. However, as discussed in Section 2.3, restrictions in
Revet’s dataflow thread model and its lack of support for
dynamically-sized tiles make it impossible to express the pro-
posed optimizations. Therefore, we use STeP to implement
schedules that are expressible in Revet and treat these imple-
mentations as the baseline. All other scheduling andmapping
decisions are identical between the baseline and optimized
implementations. We do not compare against Ripple as it
targets SDAs without on-chip scratchpads (see Section 2.3).

5.2 Dynamic Tiling
Dynamic tiling is a scheduling strategy where the size of a
tile in a data stream is determined at runtime.When applying
dynamic tiling to the batch dimension for MoEs, tokens are
grouped into tiles whose size adapts to the number of tokens
per expert in each batch. On the contrary, static tiling pads
the tokens for each expert into statically-sized tiles. Dynamic
11More details on the datasets can be found in Section B.3 of the Appendix.
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Figure 10. Performance and memory requirements of tiling
strategies for the batch dimension (batch = 1024).

tiling can be expressed in STeP by replacing the first Reshape
in Figure 7 with a Promote. This enables the following Accum
to accumulate dynamically-shaped tiles.
Dynamic tiling extends the Pareto frontier beyond what

is achievable with static tiling. We demonstrate this using
the performance improvements (green dashed arrows) and
on-chip memory savings (purple dashed arrows) against the
closest static-tiling Pareto point along each axis in Figures 9
and 10. As shown in Figure 9, for Mixtral8x7B, dynamic
tiling achieves a 1.65× speedup while using the same on-
chip memory as 𝑡𝑖𝑙𝑒 = 16. It also reduces on-chip memory by
1.33× while delivering performance comparable to 𝑡𝑖𝑙𝑒 = 32
(within +0.26% cycles). Similarly, for Qwen3-30B-A3B, dy-
namic tiling achieves a 1.69× speedup while using 2.1× less
on-chip memory than 𝑡𝑖𝑙𝑒 = 8, and reduces on-chip mem-
ory by 5.05× while maintaining performance comparable
to 𝑡𝑖𝑙𝑒 = 64 (within +0.76% cycles). The larger savings for
Qwen3-30B-A3B are due to its higher number of experts.

At larger batch sizes, dynamic tiling enables design points
that achieve performance unattainable using any static tile
size, as shown in Figure 10. For Mixtral8x7B, static tiling
saturates beyond 𝑡𝑖𝑙𝑒 = 128, where increasing the tile size
yields little to no additional speedup. In contrast, dynamic
tiling improves performance beyond 𝑡𝑖𝑙𝑒 = 128, delivering
a 1.86× speedup while using 1.79× more on-chip memory,
and a 1.87× speedup over 𝑡𝑖𝑙𝑒 = 256 with the same on-chip
memory requirement. For Qwen3-30B-A3B, dynamic tiling
achieves a 1.87× speedup while using 1.13× less on-chip
memory than 𝑡𝑖𝑙𝑒 = 64. It also delivers a 1.12× speedup
while reducing on-chip memory by 12.5× relative to the
best-performing static configuration (𝑡𝑖𝑙𝑒 = 1024).

In summary, dynamic tiling breaks the prior Pareto-optimal
frontier, achieving Pareto Improvement Distances (PID) of
1.33× and 2.11× for Mixtral-8×7B and Qwen3-30B-A3B, re-
spectively, in Figure 9, and 1.86× and 1.87× in Figure 10.12
PID for a design point 𝑝 with respect to the Pareto-optimal
subset of baseline points 𝐹𝐵 is defined as:

PID(𝑝) = min
𝑞∈𝐹𝐵

max
(
cycles(𝑞)
cycles(𝑝) ,

mem(𝑞)
mem(𝑝)

)
.

12For more details on PID, see Section B.4.
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Figure 11. STeP graph with configuration time-multiplexing.
Certain operators are omitted for simplicity.

The static-tiling Pareto curve reflects a trade-off between
on-chip memory usage and off-chip traffic: small tiles incur
frequent off-chip reloads, while large tiles waste on-chip
memory due to padding and unused space.13 Because the
application is memory-bound under our simulated hardware
configuration, this trade-off in off-chip traffic directly trans-
lates to a trade-off in performance. Dynamic tiling removes
the need to choose between frequent reloads and wasted
capacity by adapting tile sizes to the active workload. By
achieving high performance with smaller or comparable
on-chip memory, dynamic tiling frees up space that can be
repurposed to further improve performance, for example
by increasing data reuse via larger tiles or more aggressive
operator fusion.

5.3 Configuration Time-multiplexing
Configuration time-multiplexing is an optimization that time-
multiplexes a configuration across branches with shared
computation structure in applications with data-dependent
control flow. In the context of executing MoEs, a configu-
ration is dynamically time-multiplexed across experts by
routing inputs and weights accordingly. For the simplified
MoE example in Figure 7, configuration time-multiplexing
can be expressed by inserting a pair of control-flow operators
around the time-multiplexed region, as shown in Figure 11.
EagerMerge forwards inputs for each expert to the time-
multiplexed region as soon as they become available. Ran-
domOffChipLoad fetches the weight for the selected expert
dynamically, instead of using LinearOffChipLoad.
Configuration time-multiplexing avoids allocating ded-

icated compute and memory resources for every possible
branch. To quantify the resource savings, we sweep the num-
ber of experts sharing the same configured region for the
MoE layer in Qwen3-30B-A3B using static tiling (𝑡𝑖𝑙𝑒 = 32)
and dynamic tiling. With static tiling, compute utilization
improves by 2.64× with under 1% performance overhead
(Figure 12(a)). With dynamic tiling, compute utilization im-
proves by 2.51× with about 5% overhead (Figure 12(b)). As
shown in Figure 13, this optimization achieves comparable
performance while freeing up 62% allocated on-chip com-
pute and 46% memory resources, which can be reallocated
to support more concurrent requests or larger models.

13The corresponding Pareto curve for off-chip traffic versus on-chip memory
is shown in Section B.4 of the Appendix.
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Figure 13. Resource usage and performance for the MoE
layer in Qwen3-30B-A3B with time-multiplexing (tile size
=32, batch size = 64). The compute utilization drop in Fig-
ure 12 is due to decreased off-chip memory bandwidth uti-
lization because the number of parallel regions are not large
enough to saturate the off-chip memory bandwidth.

5.4 Dynamic Parallelization
Dynamic parallelization is an optimization that dispatches
work as soon as downstream parallel pipelines become avail-
able. This can improve performance by balancing load across
spatially parallel regionswhen parallelizingworkloadswhose
size or distribution can vary. In ML workloads, unevenly
sized workloads arise in attention computation during de-
coding, since KV cache lengths vary across requests. The
number of requests within a batch also varies dynamically
due to optimizations such as continuous batching [22, 53].
For attention, STeP implements dynamic parallelization as il-
lustrated in Figure 16. Each request is routed to one of several

parallel regions using Partition. The selector stream for Parti-
tion is formed by merging two streams: One for round-robin
assignment of the initial iteration (FlatMap) and another
signaling the availability of parallel regions (EagerMerge).

We compare parallelization strategies across varying batch
sizes and KV cache length distributions. We parallelize the
batch dimension by four and use two tiled static paralleliza-
tion baselines: coarse-grained and interleaved parallelization.
Static coarse-grained parallelization fixes the number of re-
quests assigned to each parallel region (16 in our implemen-
tation), whereas static interleaved parallelization distributes
requests across regions in a round-robin fashion.
As shown in Figure 14, dynamic parallelization consis-

tently outperforms static interleaved parallelization as KV
cache length variation increases. With low variation, dy-
namic parallelization achieves 1.14×–1.26× speedup; with
high variation, 1.47×–1.57× speedup. This is because under
a larger KV cache length variation, static interleaved paral-
lelization suffers from blocking when long requests increase
load imbalance, leaving resources idle.
Dynamic parallelization also maintains high utilization

across parallel regions as batch size varies. In Figure 15, it
achieves a 2.72× speedup over static coarse-grained paral-
lelization at batch=16 because several parallel regions remain
idle under static coarse-grained parallelization. Although
static performance improves with larger batches, it remains
1.43× slower at batch=64 due to persistent load imbalance.

5.5 End-to-end Model
To evaluate end-to-end impact, we implement the full Qwen3-
30B-A3B and Mixtral-8x7B models in STeP, with and without
the proposed optimizations presented above. Each Trans-
former decoder layer is fused into a single STeP graph and
executed repeatedly with layer-specific weights. Each layer
comprises of STeP graphs for QKV generation, attention,
and MoE; we parallelize the batch dimension by a factor
of four for QKV generation and attention, and use expert
parallelism for MoE. We use static interleaved parallelization
for attention, which performs best overall across batch sizes
and KV-cache lengths in our ablation study (Figure 21 in the
Appendix). For MoE computation, we use static tiling with
performance- and memory-matched tile sizes, which are the
same closest points along each axis, from Figure 9.
As shown in Figure 17, our proposed optimizations im-

prove performance while using comparable or fewer on-chip
resources. Mixtral-8×7B and Qwen3-30B-A3B achieve 1.27×
and 1.15× speedups, respectively, over the memory-matched
implementation, driven by fewer off-chip accesses from dy-
namic tiling and better load balancing from dynamic par-
allelization. Qwen3-30B-A3B achieves this speedup while
using 69% less on-chip memory and 54% fewer compute
resources through configuration time-multiplexing.
Compared with the performance-matched static imple-

mentation, on-chip memory usage is reduced by 20% for
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Mixtral-8×7B and by 88% for Qwen3-30B-A3B due to dy-
namic tiling, with additional savings for Qwen3-30B-A3B
from configuration time-multiplexing. Even with the static
performance-matched MoE implementation in Figure 9, the
dynamic implementation still deliver 1.05× (Mixtral-8×7B)
and 1.14× (Qwen3-30B-A3B) speedups due to dynamic paral-
lelization. We do not apply configuration time-multiplexing
to Mixtral-8×7B, since all experts are active at a batch=64.
However, many recent MoE models activate only a small
fraction of a large expert pool (128+ experts) per token [1,
17, 27, 44], indicating that the resource savings observed for
Qwen3-30B-A3B generalize to modern MoEs.

5.6 DSE with the Symbolic Frontend and Simulator
The experiments in the preceding subsections not only demon-
strate new optimizations, but also illustrate how STeP’s sym-
bolic frontend and simulator can be used for design space
exploration (DSE). In the dynamic tiling experiments (Fig-
ures 9 and 10), static tiling requires sweeping tile sizes to
identify the optimal trade-off between on-chip memory and
performance. If the hardware supports only static tiling, the
symbolic frontend and simulator can be used to search for
the optimal tile size for a given model, batch size, and expert
distribution. Similarly, for configuration time-multiplexing

(Figures 12 and 13) and dynamic parallelization (Figures 14
and 15), the symbolic frontend and simulator enable com-
parison of design points across different schedules, such
as varying degrees of time-multiplexing and parallelization
strategies. They also allow evaluation under input variations,
including batch size and KV-cache length distributions.

6 Discussion on Future Work
This section discusses future support for compiling models
defined in a high-level framework to STeP, and potential
approaches to support the dynamic features of STeP on SDAs.
We leave an optimal hardware SDA design and a high-level
compiler for STeP as future work.

6.1 Compiling from High-level Frameworks to STeP
Although we present STeP as a programming abstraction in
this paper, it can also serve as an intermediate representation
for compilers. For example, ML models defined in high-level
frameworks such as PyTorch can be compiled to STeP us-
ing the torch.compile interface [2]. torch.compile cap-
tures the model into an FX graph expressed in terms of
tensor-level operators, which a compiler can traverse and
systematically lower into corresponding STeP subgraphs. Op-
timization schedules—including parallelization, tiling, and
configuration time-multiplexing—can be specified over the
index variables of the program. These schedules guide how
each FX node is translated into STeP and determine which
optimizing rewrites are applied during lowering.

6.2 Supporting Dynamic STeP features in SDAs
Prior SDAs have already demonstrated architectures that
process stop-token-embedded data streams [20, 38]. A few
bits in the datapath are used to identify the stop tokens and
their level, and the streams are processed either by repur-
posing existing hardware units [38] or by designing a new
dedicated state machine to process stop tokens [20].

STeP’s control flow operators (Section 3.2.3) can be imple-
mented by spatially laying out all branches and activating
the appropriate ones data-dependently at runtime. Routing
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can be implemented either through predication in compute
units [56] or within the network-on-chip interconnect [12].

To handle dynamic tensor sizes, the memory system must
support virtualization by allocating space at a fixed granular-
ity independent of stream length and maintaining mappings
between stream references and their memory addresses. Non-
contiguous allocation is also required to avoid fragmenta-
tion. This can be implemented using a hardware-managed
mapping cache (e.g. a linked list) that translates stream refer-
ences into a sequence of noncontiguous physical addresses.
With 512 KB of local memory per unit [33], the mapping
cache requires less than 30 KB of metadata (≈6% overhead),
comparable to the tag overhead in conventional caches. Fur-
thermore, arbitrary tensor sizes without an upper bound can
be supported via spilling mechanisms demonstrated in prior
SDAs [11], where data is automatically spilled and metadata
for accessing the spilled data remains on-chip.

7 Related Work
This section presents work related to STeP beyond SDAs.

CUDA graphs and conditional nodes [30] enable condi-
tional or repeated execution of subgraphs without returning
control to the CPU. While similar to STeP’s control-flow
operators, they do not support dynamic shapes. Common
workarounds map dynamic shapes to an enumeration of
many static GPU kernels, which adds overhead as the dy-
namic dimension’s range increases [36].

Dynamic task-parallelism frameworks [4, 7, 16] share
several themes with STeP but operate at different granulari-
ties and use different mechanisms. TaskStream [7] and STeP
both support asynchronous units, dynamic work distribu-
tion, and dynamic data reuse. However, STeP realizes these
ideas at the tile granularity via dynamic dataflow blocks,
whereas TaskStream targets coarser task instances via hard-
ware scheduling. Taskflow [16] also provides in-graph con-
trol flow and graph-based parallel abstractions, but targets
CPU/GPU systems and supports dynamic parallelism via
work stealing. Cheng et al. [4] similarly target irregular
workloads on scratchpad-managed architectures, but focus
on a Cilk/TBB-style work-stealing runtime for manycore
systems.

8 Conclusion
We introduced the Streaming Tensor Programs, a stream-
ing abstraction for dynamic tensor applications on spatial
dataflow accelerators. STeP expresses optimizations that are
Pareto-optimal over prior spatial dataflow abstractions, de-
livering speedups and/or with fewer resources. Its stream
structure and shape semantics expose performance-critical
metrics, creating new opportunities for optimization. We
envision that STeP will enable richer forms of dynamic ap-
plications and architectures.
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A Artifact Appendix
A.1 Abstract
This appendix describes how to set up and run programs
written in the Symbolic Python frontend for the Streaming
Tensor Program (STeP) using the STeP Rust simulator and
the Bluespec SystemVerilog HDL simulator. The artifact pro-
vides a Docker image containing all required dependencies
(Python, Rust, Bluespec, protobuf, etc.) and scripts to repro-
duce the experimental results reported in the paper. The
artifact can be executed on any x86-64 machine with Docker,
Python 3, Git, and Bash support, at least 32 GB of RAM, and
more than 20 GB of disk space.

A.2 Artifact Check-List (Meta-Information)
• Data set:AzureLLMInferenceDataset [32], expert rout-
ing data collected by running Qwen3-30B-A3B [52]
and Mixtral8x7B [17] models using the hh-rlhf serv-
ing trace [10], and synthetically generated tensors. To
reduce artifact size, we include only the data used to
generate the plots in the paper from the AzureLLMIn-
ferenceDataset and the expert routing data.

• Run-time environment: Docker, Git, Python 3, and
Bash must be installed on the local machine. Profi-
ciency in Bash and Git is recommended.

• Hardware: Any conventional x86-64 CPU with at
least 32 GB of RAM should work.

• Metrics:Cycles, off-chipmemory traffic, on-chipmem-
ory requirements, allocated compute resources, com-
pute resource utilization, and off-chip memory band-
width utilization.

• Output: Terminal output, files, and graphs (PDF fig-
ures).

• Howmuchdisk space is required (approximately):
Approximately 20 GB of disk space is sufficient.

• How much time is needed to prepare the work-
flow (approximately)?: About 10–15 minutes.

• How much time is needed to complete experi-
ments (approximately)?: The total time to complete
all experiments is approximately 24.5 hours when mea-
sured on a Google Cloud C4-standard-8 instance (8
Intel Emerald Rapids vCPUs, 30 GB memory). The
breakdown is as follows:
– Figure 8: 2 hours
– Figure 9: 2 hours 30 minutes
– Figure 10: 17 hours 10 minutes
– Figure 12: 1 hour 40 minutes
– Figure 13: 50 minutes
– Figure 14: 4 minute
– Figure 15: 1 minutes
– Figure 21: 15 minutes

• Publicly available?: Yes, on GitHub at step_artifact
and step-artifact-hdl.

• Code licenses (if publicly available)?: MIT License

• Workflow framework used?: Docker
• Archived (provide DOI)?: Yes. The DOI is
https://doi.org/10.6084/m9.figshare.31095274

A.3 Description
A.3.1 How to Access. The code for this submission can
be downloaded from the step_artifact and step-artifact-hdl
repositories. The step_artifact repository includes a Docker-
file that can be used to build the Docker image for the full
evaluation of the artifact. The Docker image is also available
at https://doi.org/10.6084/m9.figshare.31095274.

A.3.2 Hardware Dependencies. We recommend using
an x86-64 machine with at least 32 GB of memory.

A.3.3 Software Dependencies. The artifact requires a
machine with Docker, Git, and Python 3 installed. We evalu-
ated the artifact using the following configuration: Ubuntu
24.04 LTS, Docker 29.1.3, and Python 3.12 (Intel-based ma-
chine).

A.3.4 Data Sets. The experiments for Figures 9, 10, 12
and 13 use expert routing data collected by running the
Qwen3-30B-A3B [52] and Mixtral8x7B [17] models with the
hh-rlhf serving trace [10]. To select representative cases, we
measure the standard deviation of expert bin counts across
iterations and layers and choose the case whose deviation is
closest to the overall average.
The experiment for Figures 14, 15 and 21 uses KV cache

lengths sampled from the AzureLLMInferenceDataset [32].
We analyze 5,000 requests within a time window, forming
batches with varying prompt-length distributions. We exper-
iment with batches whose prompt-length standard deviation
matches that of the full set, as well as batches with the most
and least variability. The KV cache length data and expert
routing data used for the experiments are included in the
step_artifact repository.

A.4 Installation
To install the artifact, first clone the step_artifact and step-
artifact-hdl repositories to the local machine. Then, build the
Docker image using the following commands (the build can
take up to 5 minutes):
$ git clone --recursive https :// github.com/

stanford -ppl/step_artifact.git

$ git clone https :// github.com/stanford -ppl/

step -artifact -hdl.git

$ docker build -f step_artifact/Dockerfile

-t step_artifact .

The Docker container can be started with the following
command, which will print the container ID:
$ docker run -dit step_artifact bash

The container can be attached by running:
$ docker attach <CONTAINER_ID>

https://github.com/stanford-ppl/step_artifact
https://github.com/stanford-ppl/step-artifact-hdl
https://doi.org/10.6084/m9.figshare.31095274
https://github.com/stanford-ppl/step_artifact
https://github.com/stanford-ppl/step-artifact-hdl
https://github.com/stanford-ppl/step_artifact
https://doi.org/10.6084/m9.figshare.31095274
https://github.com/stanford-ppl/step_artifact
https://github.com/stanford-ppl/step_artifact
https://github.com/stanford-ppl/step-artifact-hdl
https://github.com/stanford-ppl/step-artifact-hdl


ASPLOS ’26, March 22–26, 2026, Pittsburgh, PA, USA Gina Sohn et al.

Once inside the Docker container, move into the directory
step_artifact and run the following command to set up
the environment:
### Inside the Docker container ###

$ cd /root/step_artifact

$ source setup.sh

A.5 Experimental Workflow
The experimental workflow for this artifact consists of run-
ning scripts inside the Docker container to execute exper-
iments and generate the figures in the paper. Detailed in-
structions can be found in the README.md files within the
step_artifact and step-artifact-hdl repositories.

A.6 Evaluation and Expected Results
All experiments and figures can be reproduced using the
following commands. In total, the workflow takes approxi-
mately 7 hours when tested on a Google Cloud C4-standard-8
instance (8 Intel Emerald Rapids vCPUs, 30 GB memory).
### In the Docker container ###

$ cd /root/step_artifact

# Figures 9, 10, 12, 13, 14, 15, and 21

$ source ae_cmd.sh

# Figure 8

$ cp /root/step_artifact/hdl_validation/fig8

.csv /root/step -artifact -hdl/

step_reference.csv

$ cd /root/step -artifact -hdl

$ ./ run_dse_and_figure.sh

# ctrl+p ctrl+q

Once the experiments finish, detach from the container
by pressing Ctrl+P followed by Ctrl+Q. To copy the experi-
ment results and figures from the container, move into the
cloned step_artifact repository on the local machine and
run the following commands. The CONTAINER_ID is the same
ID used to attach to the container; it can also be retrieved by
running docker ps. The results and figures will be copied
to step_artifact/results.
### On the local machine ###

$ cd step_artifact

$ mkdir -p results

$ python copy_from_docker.py --docker_id

<CONTAINER_ID > --output_dir ./ results

The expected directory structure under step_artifact/
results is as follows:
step_artifact/results
|_ step-artifact-hdl
|_ step_artifact

|_ dyn_tiling
|_ dynamic_par
|_ timeshare_mem_bound

• Figure 8: The reproduced figure and experiment re-
sults can be found in the step-artifact-hdl direc-
tory. The file validation.pdf should match Figure 8.
The values used to generate the plot are provided in
the other two CSV files in the same directory.

• Figure 9: The reproduced figure and experiment re-
sults can be found in the dyn_tiling directory. The
file figure9.pdf should match Figure 9. The values
used to generate the plot can be found in figure_
9_mixtral_b64_raw.csv and figure_9_qwen_b64_
raw.csv.

• Figure 10: The reproduced figure and experiment re-
sults can be found in the dyn_tiling directory. The
file figure10.pdf should match Figure 10. The val-
ues used to generate the plot can be found in figure_
10_mixtral_b1024_raw.csv and figure_10_qwen_
b1024_raw.csv.

• Figure 12: The reproduced figure and experiment re-
sults can be found in the timeshare_mem_bound direc-
tory. The file figure12.pdf should match Figure 12.
The values used to generate the plot are provided in
the remaining CSV files in the same directory.

• Figure 13: The reproduced figure and experiment re-
sults can be found in the timeshare_mem_bound direc-
tory. The file figure13.pdf should match Figure 13.
The values used to generate the plot are provided in
the remaining CSV files in the same directory.

• Figure 14: The reproduced figure and experiment re-
sults can be found in the dynamic_par directory. The
file figure14.pdf should match Figure 14. The values
used to generate the plot are provided in batch64_
interleave_dynamic.csv.

• Figure 15: The reproduced figure and experiment re-
sults can be found in the dynamic_par directory. The
file figure15.pdf should match Figure 15. The val-
ues used to generate the plot are provided in batch_
sweep_coarse_vs_dynamic.csv.

• Figure 21: The reproduced figure and experiment re-
sults can be found in the dynamic_par directory. The
file figure21.pdf should match Figure 21. The values
used to generate the plot are provided in the remaining
CSV files in the same directory.

A.7 Toolchain Customization
Details on how to customize the toolchain (the Python fron-
tend and Rust simulator) can be found in the To customize
or extend the toolchain section of the README.md file in the
step_artifact repository.

B Appendix
B.1 STeP Operator Syntax and Shape Semantics
This section contains the syntax and shape semantics of STeP
operators.We express stream types in the form of Strm<T,a>
where T is the data type of the stream and a is the rank of the

https://github.com/stanford-ppl/step_artifact
https://github.com/stanford-ppl/step-artifact-hdl
https://github.com/stanford-ppl/step_artifact?tab=readme-ov-file#optional-to-customise-or-extend-the-toolchain
https://github.com/stanford-ppl/step_artifact?tab=readme-ov-file#optional-to-customise-or-extend-the-toolchain
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stream. We will use uppercase letters in the angle brackets
(<,>) to denote the data type of the stream and lowercase
letters for the stream rank.

We use different uppercase letters to express the available
data types for each operator.

• R,R′: Any data type
• A,B: Non-buffer type
• S: Statically sized tile
• SEL: Selector type
• I: [1, 1] tile of integer address data type.

For dynamic routing and merging operators (Table 6), the
subscript 𝑖 in the input and output stream shape is used to
specify the shape of the 𝑖-th input or output stream. For
the Reshape operator, when splitting a dimension higher
than the innermost (scalar) dimension, it should be a static
dimension divisible by the chunk size. When splitting the
innermost (scalar) dimension, there is no restriction on the
dimension shape, and it will be accordingly padded.

B.2 Hierarchical Tiling
Whenmapping to the HDL simulator described in Section 4.5,
we apply hierarchical tiling to the tiles in each stream. The
larger logical tiles defined at the STeP level are partitioned
into smaller physical tiles that match the fabric’s compute
tile size. Figure 18 shows an example graph transformation
for hierarchical tiling. As shown in the graph, STeP oper-
ators and the shape semantics can also be used to express
hierarchical tiling.

B.3 Dataset
To create batch data from the AzureLLMInference dataset
[32], we batch multiple requests within a 5,000-request time
window and compute the standard deviation of KV cache
lengths for each batch. We experiment with batches whose

Map
fn =𝐴 × 𝐵𝑇

[4]
[16, 32]

[4]
[16, 256]

[4]
[32, 256]

becomes

Bufferize
rank=1

Repeat
count=2

Streamify

Bufferize
rank=2

Repeat
count=1

Streamify

Map
fn =𝐴 × 𝐵𝑇

Accum
rank=1

fn = ElemAdd

[4, 1, 2]
[16, 16]

[4, 1, 16]
[16, 16]

[4, 2, 16]
[16, 16]
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[16, 16]

[4, 1, 2, 16]
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Figure 18. Conversion of STeP 𝐴 × 𝐵𝑇 map node of large
tile size to smaller tile size.

prompt length standard deviation matches that of the full
5,000-requests, and batches with the top 10% highest and
lowest variability.
For the expert routing data in the MoE layers, we run

Qwen3-30B-A3B [52] and Mixtral8x7B [17] using the real-
world serving trace HH-RLHF [10]. To select representative
cases, wemeasure the standard deviation of expert bin counts
across iterations and layers, and choose the one whose devi-
ation is closest to the overall average.

B.4 Dynamic Tiling
In Section 5.2, we only show the Pareto curve for perfor-
mance and on-chipmemory requirement, as the performance
and off-chip memory traffic show the same trend due to the
application being memory-bound in the simulated hardware
configuration. The pareto curve for the off-chip memory
traffic and on-chip memory usages is in Figures 19 and 20.
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Operator Signature In Stream Shape Out Stream Shape
LinearOffChipLoad<S,R,a,b> (ref: Strm<R,b>, base_addr: int, [𝐷𝑏 , · · · , 𝐷0] [𝐷𝑏 , · · · , 𝐷0,

tiled_in_shape: [int], 𝐷 ′
𝑎−1, · · · , 𝐷 ′

0]
stride: [int], tiled_out_shape: [int]) (a=|tiled_in_shape|)
→ Strm<S,a+b>

LinearOffChipStore<S,a> (in: Strm<S,a>, base_addr: int) [𝐷𝑎−1, · · · , 𝐷0]
RandomOffChipLoad<I,S,a,b> (raddr: Strm<I,a>, base_addr: int, [𝐷𝑎, · · · , 𝐷0] [𝐷𝑎, · · · , 𝐷0]

tiled_in_shape: [int]) → Stream<S,a>
RandomOffChipStore<I,S,a,b> (waddr: Strm<I,b>, wdata: Strm<S,b>, [𝐷𝑎, · · · , 𝐷0] (waddr) [𝐷𝑎, · · · , 𝐷0]

base_addr: int, tiled_in_shape: [int]) [𝐷 ′
𝑏
, · · · , 𝐷 ′

0] (wdata)
→ Stream<bool,a>

Table 3. STeP off-chip memory operators. The square brackets in the operator signature express a list type.

Operator Signature In Stream Shape Out Stream Shape
Bufferize<S,a,b> (in: Strm<S,a>) → Strm<Buffer<S,b>,a-b> [𝐷𝑎, · · · , 𝐷𝑏 , [𝐷𝑎, · · · , 𝐷𝑏 ]

𝐷𝑏−1, · · · , 𝐷0] (buffer: [𝐷𝑏−1, · · · , 𝐷0])
Streamify<S,R,a,b,c> (in: Strm<Buffer<S,a>,b>, ref: Strm<R,b+c>, [𝐷𝑏 , · · · , 𝐷0] (data) [𝐷𝑏 , · · · , 𝐷0, 𝐷

′
𝑐−1, · · · , 𝐷 ′

0,

stride: [int], out_shape: [int]) [𝐷𝑏 , · · · , 𝐷0, 𝐷 ′′
|𝑜𝑢𝑡_𝑠ℎ𝑎𝑝𝑒 |−1, · · · , 𝐷

′′
0 ]

→ Strm<S,|out_shape|+b+c> 𝐷 ′
𝑐−1, · · · , 𝐷 ′

0] (ref)
Table 4. STeP on-chip memory operators. For Streamify, if the buffer is dynamically-sized, |out_shape| is replaced with a.

Operator Signature In Stream Shape Out Stream Shape
Map<A,B,a> (in: Strm<A,a>, fn: Fn(A)→ B) → Strm<B,a> [𝐷𝑎, · · · , 𝐷0] [𝐷𝑎, · · · , 𝐷0]
Accum<A,R,a,b> (in: Strm<A,a>, update_fn: Fn(A,R)→R, [𝐷𝑎, · · · , 𝐷𝑏 , [𝐷𝑎, · · · , 𝐷𝑏 ]

init_fn: Fn()→R) → Strm<R,a-b> 𝐷𝑏−1, · · · , 𝐷0]
Scan<A,B,a,b> (in: Strm<A,a>, update_fn: Fn(A,B) → B, [𝐷𝑎, · · · , 𝐷𝑏 , [𝐷𝑎, · · · , 𝐷𝑏 ,

init_fn: Fn() → B) → Strm<B,a> 𝐷𝑏−1, · · · , 𝐷0] 𝐷𝑏−1, · · · , 𝐷0]
FlatMap<A,B,a,b> (in: Strm<A,a>, fn: Fn(A)→Strm<B,b>) → Strm<B,a+b> [𝐷𝑎, · · · , 𝐷1, 𝐷0] [𝐷𝑎, · · · , 𝐷1, 𝐷

′
𝑏
, · · · , 𝐷 ′

0]
Table 5. STeP higher-order operators.

Operator Signature In Stream Shape Out Stream Shape
Partition<R,SEL,a,b> (in: Strm<R,a>, sel: Strm<SEL,b>, [𝐷𝑎, · · · , 𝐷0] (in) [𝐷𝑖

𝑎−𝑏 , 𝐷
𝑖
𝑎−𝑏−1, · · · , 𝐷

𝑖
0]𝑖

num_consumers: int) → [Strm<R,a-b>] [𝐷𝑎, · · · , 𝐷𝑎−𝑏 ] (sel)
Reassemble<R,SEL,a,b> (in: [Strm<R,a>], [𝐷𝑠

𝑏
, · · · , 𝐷𝑠

0] (sel) [𝐷𝑠
𝑏
, · · · , 𝐷𝑠

0,

sel: Strm<SEL,b>) → Strm<R,a+b+1> [𝐷𝑖
𝑎, 𝐷

𝑖
𝑎−1, · · · , 𝐷𝑖

0]𝑖 (in) 𝐷𝑠𝑒𝑙
𝑎 , 𝐷𝑎−1, · · · , 𝐷0]

EagerMerge<R,SEL,a> (in: [Strm<R,a>]) [𝐷𝑖
𝑎, 𝐷

𝑖
𝑎−1, · · · , 𝐷𝑖

0]𝑖 [∑𝑖 𝐷
𝑖
𝑎, 𝐷𝑎−1, · · · , 𝐷0] (data)

→ Strm<R,a>, Strm<SEL,0> [∑𝑖 𝐷
𝑖
𝑎] (sel)

Table 6. STeP routing and merging operators.

Operator Signature In Stream Shape Out Stream Shape
Flatten<R,a,min,max> (in: Strm<R,a>) → Strm<R,a-(max-min)> [𝐷𝑎, · · · , 𝐷𝑚𝑎𝑥 , · · · , [𝐷𝑎, · · · , 𝐷𝑛𝑒𝑤, · · · , 𝐷0]

𝐷𝑚𝑖𝑛, · · · , 𝐷0] (𝐷𝑛𝑒𝑤 = Π𝑚𝑎𝑥
𝑖=𝑚𝑖𝑛𝐷𝑖 )

Reshape<A,a,b> (in: Strm<A,a>, chunk_size: int, [𝐷𝑎, · · · , 𝐷𝑏 , [𝐷𝑎 · · · ,
⌊
(𝐷𝑏+𝑆−1)

𝑆

⌋
, 𝑆,

pad: Option<A>) 𝐷𝑏−1 · · · , 𝐷0] 𝐷𝑏−1 · · · , 𝐷0] (data, padding)

→ Strm<A,a+1>, Strm<bool,a+1> (𝑆 = chunk_size)
Promote<R,a> (in: Strm<R,a>) → Strm<R,a+1> [𝐷𝑎, · · · , 𝐷0] [𝐷𝑎+1, 𝐷𝑎, · · · , 𝐷0]

(𝐷𝑎+1 = (1 𝑖 𝑓 (𝐷𝑎 > 0) 𝑒𝑙𝑠𝑒 0))
Expand<R’,R,a> (in: Strm<R’,a>, ref: Str<R,a>,) [𝐷𝑎, · · · , 1𝑏 , · · · , 10] (data) [𝐷𝑎, · · · , 𝐷𝑏 , · · · , 𝐷0]

b: int) → Strm<R’,a> [𝐷𝑎, · · · , 𝐷𝑏 , · · · , 𝐷0] (ref)

Zip<R,R’,a> (in1: Strm<R,a>, in2: Str<R′,a>)→Strm<(R,R′),a> [𝐷𝑎, · · · , 𝐷0] (in1,in2) [𝐷𝑎, · · · , 𝐷0]
Table 7. STeP shape operators.
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Figure 21. Normalized performance of parallelization strate-
gies relative to dynamic parallelization. For each class, we
sample three batches and report the geometric mean perfor-
mance. KV $ is used as shorthand for KV cache.

To show that dynamic tiling extends the Pareto frontier
beyond what is attainable with static tiling, we use the Pareto
Improvement Distance metric (PID). The PID measures the
distance from a new design point 𝑝 to a reference Pareto
frontier 𝐹𝐵 as the smallest worst-objective multiplicative
improvement required for some 𝑞 ∈ 𝐹𝐵 to match 𝑝 on all
objectives. This can be seen as similar to the single-point
specialization of the Average Distance from Reference Set
(ADRS) metric [9, 26, 51]. We treat both objectives as min-
imization: cycle count and on-chip memory. Let 𝐹𝐵 denote
the Pareto-optimal subset of baseline (static) points after
removing dominated configurations. For a new point 𝑝 (e.g.,
tile=dynamic), we measure its distance to the baseline fron-
tier by comparing it to every𝑞 ∈ 𝐹𝐵 and computing the small-
est multiplicative factor by which a baseline point would
need to improve to match 𝑝 in both objectives simultane-
ously:

PID(𝑝) = min
𝑞∈𝐹𝐵

max
(
cycles(𝑞)
cycles(𝑝) ,

mem(𝑞)
mem(𝑝)

)
. (2)

Intuitively, for each baseline frontier point𝑞, the innermax(·)
selects the harder objective to match (cycles or memory),
and the outer min(·) picks the baseline point closest to 𝑝

under this worst-case ratio. This yields a single interpretable
number: PID(𝑝) > 1 means 𝑝 lies strictly beyond the base-
line frontier, PID(𝑝) = 1 means 𝑝 lies on the frontier, and
PID(𝑝) < 1 means 𝑝 is dominated by the baseline frontier.

B.5 Dynamic Parallelization
As shown in Figure 21, static interleave parallelization per-
forms better for smaller batch sizes because the coarse-grained
static parallelization can only utilize a portion of the allo-
cated resource when receiving smaller batch sizes. However,
for larger batch sizes, static coarse-grained parallelization
performs better as it avoids workload distribution being
blocked by a single request with a long KV cache. To avoid
this blocking, the interleaving static parallelization requires
large buffers in front of each parallel region. However, static
coarse-grained parallelization will still suffer from the load
imbalance across parallel regions. We also simulate the case
where a batch with size 64 and 16 is pipelined as micro
batches to see the aggregate effect under different batch sizes.
Dynamic parallelization consistently outperforms static par-
allelization across different batch sizes and KV cache length
distributions by dispatching work to parallel regions as soon
as they become free. Overall, static interleaved parallelization
and static coarse-grained parallelization achieve geometric
mean speedups of 1.36× and 1.85×, respectively.
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