
FuseFlow: A Fusion-Centric Compilation Framework
for Sparse Deep Learning on Streaming Dataflow

Rubens Lacouture

Stanford University

Stanford, USA

rubensl@stanford.edu

Nathan Zhang

SambaNova Systems, Inc.

Palo Alto, USA

stanfurd@stanford.edu

Ritvik Sharma

Stanford University

Stanford, USA

rsharma3@stanford.edu

Marco Siracusa

Barcelona Supercomputing Center

Barcelona, Spain

marco.siracusa@bsc.es

Fredrik Kjolstad

Stanford University

Stanford, USA

kjolstad@stanford.edu

Kunle Olukotun

Stanford University

Stanford, USA

kunle@stanford.edu

Olivia Hsu

Stanford University

Stanford, USA

Carnegie Mellon University

Pittsburgh, USA

owhsu@stanford.edu

Abstract
As deep learning models scale, sparse deep learning (DL)

models that exploit sparsity in weights, activations, or in-

puts and specialized dataflow hardware have emerged as

powerful solutions to address efficiency. We propose Fuse-

Flow, a compiler that converts sparse machine learning mod-

els written in PyTorch to fused sparse dataflow graphs for

reconfigurable dataflow architectures (RDAs). FuseFlow is

the first compiler to support general cross-expression fu-

sion of sparse operations. In addition to fusion across ker-

nels (expressions), FuseFlow also supports optimizations like

parallelization, dataflow ordering, and sparsity blocking. It

targets a cycle-accurate dataflow simulator for microarchi-

tectural analysis of fusion strategies. We use FuseFlow for

design-space exploration across four real-world machine

learning applications with sparsity, showing that full fusion

(entire cross-expression fusion across all computation in

an end-to-end model) is not always optimal for sparse mod-

els—fusion granularity depends on the model itself. FuseFlow

also provides a heuristic to identify and prune suboptimal

configurations. Using FuseFlow, we achieve performance

improvements, including a ∼2.7x speedup over an unfused

baseline for GPT-3 with BigBird block-sparse attention.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

ASPLOS ’26, Pittsburgh, PA, USA.
© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2359-9/2026/03

https://doi.org/10.1145/3779212.3790165

CCS Concepts: • Computer systems organization →
Data flow architectures; •Theory of computation→ Stream-

ingmodels; •Computingmethodologies→Machine learn-

ing; • Software and its engineering→ Compilers.

Keywords: sparse machine learning, Einsum, tensor com-

piler, kernel fusion, spatial dataflow accelerator

ACM Reference Format:
Rubens Lacouture, Nathan Zhang, Ritvik Sharma, Marco Siracusa,

Fredrik Kjolstad, Kunle Olukotun, andOlivia Hsu. 2026. FuseFlow: A

Fusion-Centric Compilation Framework for Sparse Deep Learning

on Streaming Dataflow. In Proceedings of the 30th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2 (ASPLOS ’26), March 21–26, 2026,
Pittsburgh, PA, USA. ACM, New York, NY, USA, 23 pages. https:
//doi.org/10.1145/3779212.3790165

1 Introduction
Deep learning models may have sparse weights, activations,

or inputs—naturally occurring or induced. Exploiting this

sparsity during computation, which we call sparse deep learn-
ing (DL), reduces compute and memory requirements but in-

troduces irregular memory access patterns [21, 22, 27, 30, 70].

To increase hardware efficiency, researchers are building spe-

cialized hardware to accelerate sparse computations [9, 13,

20, 28, 42, 52, 54, 56, 57, 60, 64]. In order to increase efficiency

in these hardware architectures, they are alsomaking increas-

ing use of dataflow, or direct connections between coarse-

grained functional units, to rely less on expensive caches,

local memories, and memory operations. Dataflow archi-

tectures are particularly well-suited for sparse computation

because they explicitly coordinate data movement through

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3779212.3790165
https://doi.org/10.1145/3779212.3790165
https://doi.org/10.1145/3779212.3790165

ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA. Rubens Lacouture et al.

cor
a

dblp
arx

iv
col

lab mag
10−1

100

101

102
U

ti
l.
 (

%
) SM Mem

Figure 1. Log plot of SM and DRAM utilization (%) for PyG
GCN inference on an RTX 5090 across five datasets.

streaming connections rather than relying on caches, natu-

rally handling the irregular memory access patterns inherent

in sparse data [32, 42, 60]. Empirically, GPUs are underuti-

lized: A 3-layer GCN inference in PyTorch Geometric (PyG)
on an RTX 5090 across five real-world graphs shows con-

sistently low compute (SM) utilization (avg 16.7%) and ∼1%
memory utilization (Figure 1). These observations motivate

specialized sparse dataflow accelerators and the compiler

support to program them.

Hsu et al. [32] introduced the Sparse Abstract Machine

(SAM) to increase the programmability of these emerging

sparse dataflow hardware architectures. The Sparse Abstract

Machine is a dataflow abstract machine for sparse tensor

algebra computations. It adopts a streaming dataflow model,

where data flows between compute nodes. It can express any

tensor algebra expression by composing a handful of simple

and intuitive dataflow blocks. It also naturally supports ex-

pressing fused computation across multiple expressions, dif-

ferent ways to order the dataflow (the iteration order) within

an expression (e.g., Gustavson’s algorithm [25] versus inner

product for sparse matrix multiplication), and lends itself to

compile to fabricated hardware [42]. SAM is therefore a nat-

ural starting point as a compiler intermediate representation

(IR) for targeting sparse ML models to dataflow hardware.

Hsu et al. [32] also describe a compilation flow from high-

level sparse tensor algebra expressions to SAM dataflow

graphs. Their Custard compiler generates SAM graphs that

fuse operations across a sparse tensor algebra expression

and lets users control the dataflow order. The Custard com-

pilation algorithm is a significant step forward, as the first

to demonstrate compilation of sparse tensor algebra expres-

sions to dataflow. It is not, however, suitable for ML model

compilation due to its limited capabilities for fusion.

Because Custard compiles individual expressions, it is un-

able to fuse operations across expressions—a key feature in

ML compilers [11, 44]. Moreover, the intra-expression fusion

that falls out of Custard’s compilation algorithm fully fuses

each expression without any support for partial fusion. Par-

tial fusion is often desirable to provide some of the benefits

of fusion while controlling the amount of reuse within a

computation (as demonstrated by FlashAttention [14]). The

fusion–recomputation tradeoff is fundamental: fusion elim-

inates intermediate tensors between operations, reducing

memory traffic, but excessive fusion can force recomputation

of values [17, 82]. Conversely, insufficient fusion materializes

intermediate tensors to memory, forcing more data move-

ment. This tradeoff is even more critical, and looks different

from that of dense computation, since fused sparse compu-

tation may have better asymptotic complexity [2, 4, 32, 38].

Therefore, an ML compiler should expose the fusion granu-

larity as a user schedule so the fusion and reuse tradeoff can

be explored across models.

In this paper, we describe a new approach for lowering

sparse DLmodels, models with one ormore sparse tensors, to

SAM dataflow graphs. Unlike prior work on sparse tensor al-

gebra compilers that target individual expressions, FuseFlow

compiles complete sparse DL inference pipelines, includ-

ing nonlinear operations and masking. FuseFlow supports

sparse tensors from any source, whether from pruning, nat-

ural zeros, or induced patterns, provided that the sparse data

structure type is determined before compilation (Section 4.1).

Our approach supports both cross-expression fusion and

partial fusion, allowing users to explore the trade-off be-

tween fusion and reuse. Our work consists of two new IRs

that enable this fusion exploration. The first IR, a fused Ein-

stein Summation (Einsum) representation, tracks the flow of

indexing (coordinate) data and values across fused expres-

sions. Then, we introduce a new fusion table representation,

a lowering IR that names andmemoizes intermediate streams

allowing the compiler to reference subgraphs before their

materialization to efficiently emit the fused dataflow graph.

We also develop FuseFlow, the first academic end-to-end

sparse ML compiler for reconfigurable dataflow architec-

tures. FuseFlow compiles PyTorch [3] with sparse annota-

tions [24, 75] to SAM graphs. In FuseFlow, users leverage a

scheduling language that lets them control fusion granular-

ity and dataflow ordering of expressions. To support modern

ML models, we also add support for dense blocks to support

block-sparse tensors, non-linear functions, and masking op-

erations to SAM. Finally, our FuseFlow system can generate

dataflow graphs that execute in a data-parallel fashion in

addition to the pipeline parallelism native to dataflow graphs.

FuseFlow targets both cycle-accurate simulation and FPGA

synthesis and existing dataflow accelerators [10, 42], with

validated agreement between FPGA and the simulation (Sec-

tion 8.2). Our technical contributions are thus:

• A new data structure and algorithm for fusion across

multiple independent Einsum expressions (Section 5),

• A new abstraction that enables interleaved reductions

for factored iteration and on-the-fly rearrangement of

dataflow graphs (Section 6),

• A lowering algorithm that converts the fused Einsum

expressions to a dataflow representation (Section 6)

FuseFlow: A Fusion-Centric Compilation Framework for Sparse Deep Learning on Dataflow ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA.

root root

Level Scanner
Bj compressed

Level Scanner
Cj compressed

Repeater CiLevel Scanner
Bi compressed

j crd
Intersecter

i crd

Array C valsArray B vals

Multiplier

Vector (1) Reducer j

Level Writer
T vals

j crd

Level Writer
Ti compressed

i crd

C refB ref

C refB ref
In

pu
t I

te
ra

tio
n

Com
putation

Tensor Construction

Figure 2. SAM graph for sparse-matrix vector multiplication

with 𝑗 → 𝑖 dataflow. Streams: solid grey = coordinate (crd),

dashed grey = reference (ref), double black = value (val).

• An end-to-end compiler framework for sparse dataflow

machines (Section 7). The implementation includes op-

timizations necessary for performant application code

like parallelization, block sparsity, dataflow ordering,

and a fusion heuristic.

We demonstrate the effectiveness of FuseFlow across four

model classes by generating 56 equivalent dataflow configu-

rations that yield speedups from ∼1.5x to ∼3.9x. Our evalua-
tion underscores the importance of selecting the appropriate

fusion granularity and shows that FuseFlow’s heuristic suc-

cessfully prunes inefficient configurations, offering critical

insights for the deployment of large-scale sparse ML appli-

cations on dataflow architectures.

2 Sparse Abstract Machine Background
We provide necessary background on the Sparse Abstract

Machine (SAM) [32] to understand our FuseFlow system

and the code that it generates. SAM expresses tensor alge-

bra kernels as dataflow graphs by providing a streaming-

tensor abstraction and primitives that compose to perform

tensor algebra operations. Tensor algebra kernels can be

expressed in Einsum notation where tensors are indexed

by variables, with addition and multiplication as the core

operations. The index variables specify how levels across

tensors are broadcast, reduced, and contracted. SAM also

introduces the Custard compiler, which compiles high-level

Einsum into SAM dataflow graphs. These dataflow graphs

are suitable for VLSI implementations and simulation but

remain abstract in order to cleanly decouple programs from

accelerator implementations.

Figure 2 shows the SAM graph for sparse matrix-vector

multiplication (SpMV) 𝑇𝑖 = 𝐵𝑖 𝑗𝐶 𝑗 with the 𝑗 → 𝑖 dataflow

(∀𝑗𝑖 𝑇𝑖 += 𝐵𝑖 𝑗𝐶 𝑗) where 𝐵 is stored in a compressed format

(e.g., compressed sparse row (CSR)) [12, 24] SAM expresses

tensors as streams of data with control tokens, where these

tensor streams flow on the arrows between primitives (boxes)

in a SAM dataflow graph. SAM’s primitives include:

Level scanners (LS) traverse tensor levels. Nested LS pro-

duce streams that are logically equivalent to multidimen-

sional tensors (e.g., 𝐵 𝑗 with 𝐵𝑖 fetch matrix 𝐵’s coordinates).

Stream joiners (Intersect/Union) combine or skip coor-

dinates across tensors (e.g., the 𝑗 intersect joins 𝐵 𝑗 and 𝐶 𝑗 .

Repeaters (Rep) broadcast operands (e.g., 𝐶 across each 𝑖).

ALU and reducers (Red) perform elementwise operations

and reductions (e.g., reduce over 𝑗 in 𝑗→𝑖).

Level writers (LW) and coordinate droppers (CD) write
results and elide empty coordinates.

As in Figure 2, SAM primitives compose together with

streams to form SAM graphs that represent any tensor alge-

bra expression with varying dataflows. Arrows in Figure 2

connect dataflow primitives together and transmit streams,

where each stream is a sequence of tokens that transmits

one level of a tensor in fibertree form (a nested representa-

tion of per-level coordinates and values) [73]. Streams are

of three types: coordinates (crd), references to inner levels

(ref), and values (val). An 𝑛-order tensor is represented by

𝑛 coordinate streams plus one values stream (𝑛+1 total).
SAM graphs comprise three regions (see shading in Fig-

ure 2): input iteration, computation, and tensor construction.

The input iteration region (shown in blue) iterates through

the tensor coordinates of all input operands, joining the

sparse coordinates together (e.g. through intersecter𝑗). The

computation region (shown in yellow) fetches data values

using coordinates and computes the result values. And, the

tensor construction region (shown in red) writes the result

values and coordinates back to memory, dropping any zero

coordinates. Our work builds upon SAM and addresses com-

piler limitations by targeting fused applications beyond sin-

gle sparse tensor kernels.

3 Forms of Fusion
Fusion in dense and sparse compilers can be categorized by

scope and by technique. We describe three main types of

fusion and provide a diagram of them in Figure 3.

Pattern-based operator fusion (POF) refers to merging

operations based on recognized patterns, where sequences

of operators are replaced by one kernel that fuses those

operations. Often, the fused kernel is handcrafted. This op-

erator fusion approach is common in dense compilers on

CPUs, GPUs, and TPUs. Because POF is often completely

automatic (all detected operator patterns are always re-

placed with the fused version), it is typically limited to

localized patterns that are known in advance. Due to its lo-

calized nature, operator fusion is an intra-layer technique.

Intra-expression iteration fusion (IIF) merges the itera-

tion space of a single tensor algebra expression—co-iterating

its inputs—without crossing kernel boundaries. IIF man-

ifests as loop fusion for dense computation, co-iteration

for sparse computation, and dataflow iteration fusion in

dataflow graphs. Existing sparse tensor compilers that tar-

get dataflow hardware [31, 32] employ this type of fusion,

co-iterating to generate fused iteration spaces that elide

zeros for one sparse expression at a time.

ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA. Rubens Lacouture et al.

Compute Operator Tensor Iteration Expression (Kernel)

x

+
fma

Pattern-based Operator Fusion
(POF)

Fused Kernel
<latexit sha1_base64="X4121zwUjUS9F0xCpTC7gwmFUBI=">AAACHnicbVDLSgMxFM3UV62vUZdugkVwVWZEqxuhWBcuK9gHtMOQyWTatJkHSaZQhvkSN/6KGxeKCK70b8y0o2jrgZBzz7mX5B4nYlRIw/jUCkvLK6trxfXSxubW9o6+u9cSYcwxaeKQhbzjIEEYDUhTUslIJ+IE+Q4jbWdUz/z2mHBBw+BOTiJi+agfUI9iJJVk62fETmgKL+GVuocp7GE3lLCuitF3cW0nox9nbCfDtGTrZaNiTAEXiZmTMsjRsPX3nhvi2CeBxAwJ0TWNSFoJ4pJiRtJSLxYkQniE+qSraIB8Iqxkul4Kj5TiQi/k6gQSTtXfEwnyhZj4jur0kRyIeS8T//O6sfQurIQGUSxJgGcPeTGDMoRZVtClnGDJJoogzKn6K8QDxBGWKtEsBHN+5UXSOqmY1Ur19rRcq+dxFMEBOATHwATnoAZuQAM0AQb34BE8gxftQXvSXrW3WWtBy2f2wR9oH1/xAKHI</latexit>

ei = Bij · Cik · Dkj · vj

Kernel 2: GEMV

Kernel 1: SDDMM
<latexit sha1_base64="sSn2aJzSBvrbxa5jq2e+7ZN2KXw=">AAACEXicbZDLSsNAFIYn9VbrLerSzWARuiqJSHUjVOvCZQV7gTaEyWTSTju5MDMRSsgruPFV3LhQxK07d76NkzQLbf1h4OM/53Dm/E7EqJCG8a2VVlbX1jfKm5Wt7Z3dPX3/oCvCmGPSwSELed9BgjAakI6kkpF+xAnyHUZ6zrSV1XsPhAsaBvdyFhHLR6OAehQjqSxbr13ZCZ2k8BJe5zDEbihhS/G04Bs7mU7Siq1XjbqRCy6DWUAVFGrb+tfQDXHsk0BihoQYmEYkrQRxSTEjaWUYCxIhPEUjMlAYIJ8IK8kvSuGJclzohVy9QMLc/T2RIF+Ime+oTh/JsVisZeZ/tUEsvQsroUEUSxLg+SIvZlCGMIsHupQTLNlMAcKcqr9CPEYcYalCzEIwF09ehu5p3WzUG3dn1WariKMMjsAxqAETnIMmuAVt0AEYPIJn8AretCftRXvXPuatJa2YOQR/pH3+AHUYnM8=</latexit>

Aij = Bij · Cik · Dkj

<latexit sha1_base64="etEcKn+gygLkqHDyMNIXrga835s=">AAACBHicbVDLSgMxFM34rPU16rKbYBFclRmR6kaodOOygn1AOwyZTNqGJpMhyRTKMAs3/oobF4q49SPc+Tdm2llo64HLPZxzL8k9Qcyo0o7zba2tb2xubZd2yrt7+weH9tFxR4lEYtLGggnZC5AijEakralmpBdLgnjASDeYNHO/OyVSURE96FlMPI5GER1SjLSRfLtC/JRl8Abems4zOMCh0HDqpzwr+3bVqTlzwFXiFqQKCrR8+2sQCpxwEmnMkFJ914m1lyKpKWYkKw8SRWKEJ2hE+oZGiBPlpfMjMnhmlBAOhTQVaThXf2+kiCs144GZ5EiP1bKXi/95/UQPr72URnGiSYQXDw0TBrWAeSIwpJJgzWaGICyp+SvEYyQR1ia3PAR3+eRV0rmoufVa/f6y2mgWcZRABZyCc+CCK9AAd6AF2gCDR/AMXsGb9WS9WO/Wx2J0zSp2TsAfWJ8/g/eXZQ==</latexit>

el = Alm · vm

Inter-expression Kernel Fusion
(EKF)Kernel

Iteration
Space A

Iteration
Space B

op

Get
A

Get
B

Kernel
Fused Iteration Space

A and B

op

Get A Get
B

Intra-expression Iteration Fusion
(IIF) Kernel

Fused Iteration Space
A and B

op

Get A Get
B

Figure 3. Dataflow diagrams for the forms of fusion, showing how they differ and are related.

Inter-expression kernel fusion (EKF) fuses across differ-
ent kernels or sub-computations into a single fused com-

putation graph. This type of fusion can be implemented

in conjunction with POF and IIF, but is not supported by

existing sparse dataflow compilers [31, 32].

Of the forms of fusion above, Table 1 summarizes how

prior frameworks fit into these categories. Existing frame-

works thus leave a gap: no prior compiler automatically fuses

across multiple sparse expressions in a general way. POF in

dense compilers is limited to known templates and IIF in

dense compilers is straightforward. IIF in sparse compilers

stop at single-kernel fusion. However, EKF is necessary to

enable fusion across multiple sparse expressions in a model.

FuseFlow addresses this gap by providing a general algo-

rithm for fusing entire sparse ML pipelines across kernel

boundaries. Therefore, as highlighted by Table 1, FuseFlow is

the first sparse compiler to provide an algorithmic approach

focusing on inter-expression kernel fusion.

As FuseFlow is a sparse dataflow compiler, we contrast

its fusion capabilities with the capabilities of the two prior

sparse dataflow compilers Custard [32] and Stardust [31]

(C+S) in Figure 4.
1
Custard and Stardust only support fusion

within an expression and not across expressions. Although a

user can combine expressions into a larger expression, which

can then be fused, they must do so by hand and cannot fuse

computations that have more than one result. The various

fused regions (blue boxes) compare C+S fusion regions with

our FuseFlow, which fuses all kernels within a fusion region.

FuseFlow’s comprehensive fusion support leads to bet-

ter performance. In GCN on the OGB-Collab dataset [34]

(Figure 4b), fusion with Custard and Stardust using a hand-

written rewrite yields 1.97× speedup over the unfused base-

line. With less user effort, FuseFlow achieves another 1.33×
speedup over C+S, leading to a ∼2.63× speedup in total. We

detail the comparison methodology for these results, and fur-

ther analysis, in Section 8.4. FuseFlow’s additional speedups

come from its support for IIF during code generation. Along

with EKF, efficient fused sparse DL also hinges on the design

of IIF, which we discuss next.

1
The motivation and description in Section 1 is also true for the Stardust

compiler [31], another compiler from the same high-level sparse tensor

algebra languages to a real dataflow accelerator [60].

Tensor Multi-
expression Sparsity Fusion BackendsCompiler Strategy

TensorRT [55] ✓ ✗ POF GPU

XLA [61] ✓ ✗ POF, IIF CPU, GPU

DNNFusion [53] ✓ ✗ POF, IIF CPU, GPU

TVM [11] ✓ ✗ POF, IIF CPU, GPU, TPU

TACO [37] ✗ ✓ IIF CPU, GPU

SparseTIR [77] ✗ ✓ IIF CPU, GPU

ReACT [82] ✗ ✓ IIF CPU, GPU

Stardust [31] ✗ ✓ IIF Dataflow

Custard [32] ✗ ✓ IIF Dataflow

This Work ✓ ✓ EKF, IIF Dataflow

Table 1. Landscape of tensor compilers. EKF (Inter-
Expression Kernel Fusion) enables fusion across multiple

sparse tensor expressions. Prior sparse compilers only sup-

port IIF (Intra-Expression Iteration Fusion)within single
kernels and dense compilers primarily rely on limited POF
(Pattern-based Operator Fusion) via pattern matching.

C+S (unfused) C+S (rewrite) Fuseflow

GEMM

ElemMul

Softmax

GEMM

M

Q K

V

GEMM

ElemMul

Softmax

GEMM

M

Q K

V

SDDMM
(manual rewrite)

M Q K

Softmax

GEMM

V

Sparse Tensor Fusion RegionKernelDense Tensor

(a) Compiler fusion comparison with sparse

attention. Custard+Stardust (C+S) support

IIF and only support EKF manually where

unsupported ops break EKF.

(b) Normalized

GCN performance

with compilers

from (a).

Config Speed-
up

C+S (unfused) 1.00×

C+S (rewrite) 1.97×

FuseFlow 2.63×

Figure 4. Comparing fusion coverage and performance.

The Iteration Space Problem. In both inter- and intra-

expression fusion approaches for sparse tensor operations,

there are multiple equivalent ways to iterate through sparse

tensors, each with fundamental tradeoffs. Two primary costs,

coordinate processing and computation, define the tradeoff

between globally fused and factored iteration spaces.

A globally fused iteration space, shown in Figure 5a, it-

erates over every index variable, creating an n-dimensional

FuseFlow: A Fusion-Centric Compilation Framework for Sparse Deep Learning on Dataflow ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA.

1 for(int i = 0; i < I; i++)
2 for(int k = 0; k < K; k++)
3 for(int j = 0; j < J; j++)
4 for(int l = 0; l < L; l++)
5 D[i,l] += A[i,k] * B[k,j] * C[j,l]

(a) Global iteration space with loops

1 for(int i = 0; i < I; i++)
2 for(int k = 0; k < K; k++)
3 for(int j = 0; j < J; j++)
4 E[i,j] += A[i,k] * B[k,j]
5 for(int j = 0; j < J; j++)
6 for(int l = 0; l < L; l++)
7 D[i,l] += E[i,j] * C[j,l]

(b) Factored iteration space with loops

Figure 5. Two iteration patterns for ∀𝑖𝑘 𝑗𝑙𝐶𝑖𝑙 += 𝐴𝑖𝑘𝐵𝑘 𝑗𝐶 𝑗𝑙 ,

that are represented via loop nests with higher-order reduc-

tion variables highlighted in blue [36]. FuseFlow lowers to a

dataflow input iteration graph with a factored iteration space

(b), whereas prior work produces dataflow graphs with fully

fused iteration spaces (a).

iteration space, where n is the number of index variables

(e.g., 4-dimensional in Figure 5a). It efficiently filters unnec-

essary numerical computations but incurs significant coor-

dinate processing overhead, causing coordinate explosion as

expressions grow. Prior work on sparse tensor algebra com-

pilation to dataflow accelerators by default generates code

that traverses a global iteration space [31, 32]. In contrast,

factored iteration iterates pairwise over input tensors (see

Figure 5b). It generates multiple smaller sub-spaces, one per

binary operation (i.e. two 3-dimensional iteration spaces in

Figure 5b). Each sub-space independently handles coordi-

nate processing, significantly reducing overhead by limiting

coordinate analysis to binary operations. However, as this

analysis is local rather than global, factored iteration may

miss opportunities to skip unnecessary computations, po-

tentially increasing operations.

Global iteration spaces often perform poorly for sparse

ML applications for two key reasons. First, these applications

typically contain numerous higher-order tensors and indices,

leading to a dimensionality explosion. Second, the mixture

of sparse and dense tensors increases iteration points within

each dimension. This combination makes traversing sparse

ML models with global iteration significantly less efficient

than factored iteration approaches. Hence, we opt for fac-

tored input-iteration in FuseFlow, by design, when pushing

fusion through our lowering algorithm.

Avoiding global iteration space materialization requires a

complete restructuring of the dataflow graph and its compiler

lowering. Factored iteration preserves the order of reduction

operations, unlike global iteration. Figure 5 highlights these

behaviors. Recall that SAM graphs comprise three sequential

regions—input iteration, computation, and tensor construc-

tion (see Section 2). Global iteration computations occur at

the innermost loop (line 5 in Figure 5a), while factored it-

eration interleaves loops and computations (lines 4 and 7

in Figure 5b). From a dataflow perspective, rather than loop

transformations, the graph input iteration and computation

pipelines need to be interleaved, which we show later in

Figure 11. Specifically, higher-order reducers produce coor-

dinate streams that must interact with the input iterations of

subsequent operations to enable fusion. Therefore, we need

a new compiler approach, like FuseFlow’s, to handle efficient

sparse ML workloads on dataflow hardware.

4 Overview of FuseFlow
Figure 6 summarizes FuseFlow’s compilation flow from Py-

Torch to a fused, hardware-ready sparse dataflow graph.

Models are first lowered from PyTorch [3] to MLIR (Linalg

+ SparseTensor dialects) using either Torch-MLIR [47] for

dense model components or MPACT [24] for sparse model

components, with user-specified sparse formats and optional

schedules. Since FuseFlow’s optimizations operate entirely

at the MLIR Linalg + SparseTensor dialect level or lower, any

frontend, which includes PyTorch through Torch-MLIR [47],

that lowers to these dialects is supported. This process yields

a graph of Einsum expressions extended with non-algebraic

operators as shown by Figure 6a to Figure 6b. This stage

preserves sparsity semantics from the frontend and provides

the knobs (schedules) that guide downstream optimization.

4.1 Supported Sparsity Types
FuseFlow operates on tensors whose sparse structure type

is known before compilation, although the data itself does

not need to be available until the generated code is executed.

The supported sparse data structure types include, in the

language of the TACO data structure language [12, 37], com-

pressed data structures, uncompressed/dense data structures,

coordinates, and any combination thereof in higher dimen-

sions (e.g. dense, COO, CSR, DCSR, blocked structures, etc.).

This design makes FuseFlow orthogonal to the source of

sparsity such as from weights, activations, or inputs.

FuseFlow’s design is sparsity-source agnostic because its

fusion algorithm (Section 5) and lowering (Section 6) oper-

ate on sparse tensor formats via MLIR’s SparseTensor di-

alect, which encodes where nonzeros exist. Whether zeros

arise from lossless sparsity (e.g., graph adjacency) or lossy

sparsity (e.g., magnitude pruning), the resulting compressed

format representation is identical. The system’s constraints

(Section 5) depend only on tensor mode orders and dataflow

dependencies, not on sparsity provenance. Fusion tables (Sec-

tion 6) organize iteration based on format structure, inde-

pendent of how that structure was produced.

ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA. Rubens Lacouture et al.

Torch-MLIR +
User Schedules

and Formats

a) PyTorch Model b) Multiple Einsum Expressions w/
Optional User Schedules

Cross-expression
Kernel Fusion

(Section 5)

c) Fused Einsum Expressions + Partial Order Graph (POG)

Lowering w/
Fusion Tables

(Section 6) Codegen

e) SAMML Fused Dataflow Graphd) Fusion Table

Dataflow
Simulator

FPGA

Heuristic

Evaluation
(Section 8)

<latexit sha1_base64="td9tmNoedf/3xHV3U2aQ+cOkH84=">AAAG1nicbVRbb9s2FFaTze28S5vtcS/cnKAp4HiW26QJNgFN7KR9WLBuTZoAlhdQFGWxpkiBpJK4BPc27HX/btiPGbAjRbkoCZ/Iw+/cz3einDNt+v1/HywsfvJp6+Gjz9qff/HlV4+fLH39XstCEXpIJJfqOMKacibooWGG0+NcUZxFnB5Fs2H5f3RKlWZSHJh5TicZngqWMIINiE6WFvIwolMmrGGzjzkjplDUjduoPkLGFMUQBhaEBn5vk2QIixhVt+4VTJ5iXkJ/6Gkz5zSwscJnXUQ5Z7mmXYQ5m4qAUGGo6iKTMjLrohITRByT2Xcb/S5iQlCFNM2Dtee56aKMCZYVGUopm6YmKB26a49KFiJuuCRMEU4vzHZRwjgP9gtD46FUmN8079+0rtlHGrzIMtCQwgRhIqUR0tBS7tqTyl+oKdRVTE1qwySS52DE2X5vkBuHVlBME1xwg5hGEHf7QiOfJhk2KShmmChpQy7PqPpNnjm7tuHaK6iuuiYyh3qf65QlJvDXe+tQVjSvnySbXCW8gg5kDmmfXUnCMv3xZeknaFX4z5BtZICWwzKMakwgcHuEVbYD9aSuxEFd+IllH2bOoYPfbWjoubEiksoNXCl3KEDhle5QSv5a4fkOL0B9OUyxsdslbuaWK/1V/xk8Z+gDvH9s12G2QyrixnCdPOn0e/3qoLsXv750vPq8PVla3A9jSYoMxodwrPXY7+dmYrEyDDru2mEBHYExwlM6hqvAGdUTWwUODQJJDM1VVYNRJb2pYXGm9TyLAFl17PZfKbzvb1yYZHNimchhyAS5cJQUHBmJSqIBaxQlhs/hAiPAIFZEUqwwAQ40LcWnwJI66vOLsNuNMIDtvJFmVVB3bxpNGI4KjtV5UxpJOYMf3ZReer4v/4awlBgYhlq/DIWzSGE1tzrFOdW9KZUZNYqRLsqlZuWmYWJ6F44VzLPuARa7csJ/Wlsrl4NG0ENYYBo9fWco5iZ9Wi0daVKgcKWEDJTsjj2COQEv99IVyNoOBT0jMsvAmG0Qw40HE3s96h2/HHBYeznH82q9oM5g2ZVdAbbDpq2Q9p1MzGtFqShp4eybg/2fnR2ORutDoHgD+UuSHKXM0EvQ3s7eYHd0C9QkWG1td3d7dNvaDRbX5rZHg+HeLdT18ruEjba2Xm5ulQT0b9Pt7uX9oOdv9DZ+HXRe7dRUfOR9633vrXq+99J75b3x3nqHHln4Z+G/xdbiw9Zx64/Wn62/LqALD2qdb7zGaf39P7C/V6A=</latexit>

8ijkTnbor2
ij = ÂikT

(1)
kj

<latexit sha1_base64="dG55zv33KjGZitCc5tN0G0yF0R0=">AAAGaHicbVTNbttGEGaURk3VP7s5FEUv29hFbFRWJaV1bLQCEkt2cojRNLFjA6IiLJdDaaHlLrG7tKws+Ay9to/WV+hTdEhJlmmbp+HMN9/Mzl+QCG5ss/nvvcr9Tx5UP334We3zL7786uu19W/eG5VqBqdMCaXPA2pAcAmnllsB54kGGgcCzoJJN7efXYA2XMkTO0tgENOR5BFn1KJquF6p+AGMuHSWTz4mnNlUQ9avkcUnVQgkxDSoZNBpNfZYTKgMSSHVr2Dqgooc+nPD2JmAjgs1ndYJCMETA3VCBR/JDgNpQdeJHXM2qZMc0wkEZZMfdpt1wqUETQwknZ2nia2TmEsepzEZAx+NbScPmK0iapXKsBSScc0EzGnrJOJCdI5TC2FXaSqu07eusxv+ETq/xDF6KGk7fqSUlcpCrs9qgyKebwDrKkd27PwoUJdIkjlkyciPJISIpsISbghmzWtzh2QUxdSO0S+mTCvnCzUF/VZNM7ezm+UYP8+9v6zbgGzJ9jZxpfBk8/yD22ptZ0PHSTpsZ6RD/JxWx+4tvD7Ntk4+ON/CpXXY/yhb4X4iVxYZKL2ybG9mv9V8kGGp3cO1jWajWXzkttBaCBve4nszXL9/7IeKpTE2lAlqTL/VTOzAUW059iCr+SnWCBtLR9BHUdIYzMAV04pFQ02I5dZFyUmhve7haGzMLA4QWRTxpi1X3mXrpzbaGzguE2y7ZPNAUSqIVSQffZxjDcyKGQrYFY65EjammjKcyjJTeIFzu8j6cp52rZQG7p8oPbMoaHbnM8owGqSC6suyNlBqghZT1i4j3/X+kjLXWKXEwj9PRfBAUz1zZkwTMI0RqBis5qxOEmV4vvtcjm7DqdZqahqIpRnB8f59ZydfV0Owh3hSDHnyzgIVdvykOAPKjnGpCidisWS3+BgVDKPctUA4MWiRMGUqjpHMFbNdPBkhWb89cP7yz220Mrfp4yFKBJ0VC0822ptZ3hXcQLx9BdK9U5F9qQHkS01nmXt1cvw6c91e79cubl0J+UcUnY25hSXo6OCofdi7AepiTXOmA5FeAbuHhy96N9nOqI4P8E6t6F702t2jG6jVOVrCevv7z/b28wVs3Vy328L7dqO129j9s73x/GCxig+9773H3pbX8p55z71X3hvv1GMVXvmr8nflnwf/Vdeq31a/m0Mr9xY+j7zSV338PySKMjA=</latexit>

X
(1)
iu2

= ReLU(T self
iu2

+ Tnbor
iu2

)

<latexit sha1_base64="DOTp90yM0uUp1FQQHnbEZxywjE0=">AAAGp3icbVTbbhs3EN0orZqqtzh97Atbu4gNyKqkpI6NVkBsyU4eajhtfAO0qsDlzkqEuOSC5NpWiP2ffk1f2/5Nhys59trefSFmDs8MZ+ZMlAlubLv936Pa408+rX/25PPGF19+9fU3T1eenRqVawYnTAmlzyNqQHAJJ5ZbAeeZBppGAs6iWd/7zy5AG67ksZ1nMErpRPKEM2rRNF6p7YYRTLh0ls8+ZJzZXEMxbJDlJ1UMJMY0qGTQ67S2WUqojEl5an6EqQsqPPSnlrFzAT0Xa3rZJCAEzww0CRV8InsMpAXdJHbK2axJPKYXCcpm32+1m4RLCZoYyHqbLzLbJCmXPM1TMgU+mdqeD1jcRNQql3ElJOOaCVjQNknChegd5hbivtJU3Kbv3GY3/AP0XqYp3lDS9sJEKSuVBW8vGqMyXmgA6yondurCJFJXSFK4dqub2YL8SGJIaC4s4YZg3o3FjWySpNRO8WJKmVYuFOoS9B/qsnCbW4XHLHD+BcPr6o3Iuny5QVwlCbIWeqay0xjbnVGd7mFJoPA4fJoYO56PO/m4WxTk+E8XWriyTkZKFwW6iHeQnvestzeWlk5Bwo+MfaXEG03neyJH0rXwKIUJRXTXoxFbMqzh/4tPuxGCjCvTMn662m61y4/cP3SWh9Vg+b0brzw+DGPF8hTngQlqzLDTzuzIUW05trBohDmWGOeCTmCIR0lTMCNXJowVR0uM3dJlx0hpvX3D0dSYeRohsmzBXZ83PuQb5jbZHjkuM5wayRaBklwQq4hXDspAA7NijgfsKcdcCZtSTRkOdZUpvsCxX2Z9tUi7UUkD5SsqzywLWjz4jCqMRrmg+qpqjZSaocdUrdeRH3p/xegtFodged+nInikqZ47M6UZmNYEVApWc9YkmTLcrw4uJ/fhVGt1aVqIpQVBbfy6uenVbgj2EDeSIc/fW6DCTp+XW0TZKWqyvEQsluweH6OCYZSH9IcqRo+ES6bSFMlcRSbFsDtyNyO+2vGDjXssE3Re7guy2l0rfFdQvrg6S6R7rxL7RgNIL4fCvT0+/K1w/cHg5z5qtoI8SpKzKbdwDTrYO+juD+6AqsJasu3v7w7ust3S9JJud9DtH9xB3Wyza9hgZ+fV9o4XYOeu3O4fTrutzlZr6/fu6uvBUopPgu+CH4L1oBO8Cl4Hb4N3wUnAan/V/q79U/u3vlE/qp/WzxfQ2qPlnW+Dylen/wPnS0lI</latexit>

8iu1u2Tnbor
iu2

= T
(0)
iu1

⌦
(2)
u1u2

<latexit sha1_base64="kVU6YCzI7G8J4xRRhmeyKOFWaLs=">AAAGj3icbVTdbiM1FJ7NQljC3xYuuTEkq22lNCQB0lYQ1DZpd5GoWHbbbaVMiDweT8aKxx7ZnqZZy+/A03ALr8HbcGYy3Xba+uro+Dv/5ztBypk23e5/j2qPP/iw/tGTjxuffPrZ51883fjyrZaZIvSMSC7VRYA15UzQM8MMpxepojgJOD0PFqP8//ySKs2kODWrlE4TPBcsYgQbUM02alt+QOdMWMMW71JGTKaomzRQ+YQMKQohDSwIHfY6uyRBWISokNrvYfIS8xz6XUebFadDGyq8bCPKOUs1bSPM2VwMCRWGqjYyMSOLNsoxw4Bjsvhm0G0jJgRVSNN0uP19atooYYIlWYJiyuaxGeYB3U1EJTMRVkISpgina7dtFDHOhyeZoeFIKsxvu+/d9q7ZOzr8IUnAQgoz9CMpjZCG5nrXmBbxfE2hr2JuYutHgbwCJ852O/3UOPQMhTTCGTeIaQR5N9YW6TxKsInBMMFESetzuaTqtVw6uz1wjWd+/ltMD/zZc6ySQyiTOgiQp8tnlmWzXjbrOocaDT8vdHLd5CnaFIMtZCu5otbpn3azu+XAEoGpQ0Pkvw8wkpK/UHh1yDOI0fJjbOxBCe26lkMXMwtSYdhyP0EFEJSKsLIVs6fNbqdbPHRf6JVC0yvfq9nG4xM/lCRLYO6EY60nvW5qphYrw2BUruFn0EqYP57TCYgCJ1RPbZE1dBY0IUxFFZNBhfa2hcWJ1qskAGTR6rt/ufKhv0lmot2pZSKF7RBkHSjKODIS5QyBdVeUGL4CAWbHIFdEYqwwgeWtegovYb3LrK/WaTcqaQBNeaXMoqHuwTKqMBxkHKurqjaQcgE/uqq9jvxQ/RVlrjGwCaV9ngpngcJqZXWMU6o7cyoTahQjbZRKzfITwcT8PhwrJZe6A1jsEHDg5+3tnNUawQzh8mj0/I2hmJv4eXEtpImBe4URMtCye/4I5gSiPMgzYBkQgC6JTBJwZivUcZP+1N7sebOXbzfcq5TjVXEXULPfcvlUgKZwIgukfSMj80JRKnJOOPvy9OQ3Z0fj8Y8j4GYF+XsUncfM0GvQ8eFx/2h8B1RlV+nt6OhgfNfbLZ6X7g7G/dHxHdTN1bqGjff2dnb3cgL27tLtvvC23+kNOoM/+s39w5KKT7yvvW+9Ta/n7Xj73kvvlXfmkdpftb9r/9T+rW/Ud+q/1PfX0Nqj0uYrr/Lqv/4PAA9AOA==</latexit>

T
(0)
iu1

= Âiu0Xu0u1

<latexit sha1_base64="MjbFuHCwcc8Yt9jcLtkzyz37wz0=">AAACmXicbVHLbtswEKTVRxL15bTHXIjIBXoyJB/SHNP2EvSUonUSwBQMilrZRPgQSMqNQOjer+m1/ZX+TWlbAeqkCxAY7uwuhztFLbh1afpnED16/OTp3v5B/Oz5i5evhoevL61uDIMp00Kb64JaEFzB1HEn4Lo2QGUh4Kq4+bTmr1ZgLNfqm2tryCVdKF5xRl1IzYfHMe6DMFAODFcLPCKrUjs7woTgGM+HSTpON4EfgqwHCerjYn44mJNSs0aGgUxQa2dZWrvcU+M4E9DFpLFQU3ZDFzALUFEJNvebz3T4bciUuNImHOXwJvtvh6fS2lYWoVJSt7T3uXXyf9yscdVp7rmqGweKbR+qGoGdxuvN4JIbYE60AVBmeNCK2ZIaysJWdieVK17bXvXtVna8IyPYI8I3LQQ/1MItPakKfRv4zodNBEbBd6alpKr0ZK10MySUdLNJ7sndzSdZ50ek5LYWtLWuFYCTyajrgiXZfQMegsvJODsZn3yZJGcfe3P20RE6Ru9Qht6jM3SOLtAUMfQD/US/0O/oKPoQnUeft6XRoO95g3Yi+voXpTvMgQ==</latexit>...

For simplicity, we only show future fusion steps on the light gray shaded region

u2

i

j

u0
u3

u1

Columns (off-white)
encode fused tensors

Rows (light pink) encode
fused iteration order Cells (cool gray) encode IR nodes

and named pointers to streams

Fused region

<latexit sha1_base64="Vah6abxVCKTddH9UYyHkoA8XwVM=">AAAHXnictVVbb9MwFD4ttB2FsRVekHiJ6Io2MVVNJwovSIO98ADSgF0qNVXlOG5rzXGi2BktIT+UN34Kx2kRvYqVi4/iHJ9jf99nHytxQ8GVbjS+5fK3bheKpa075bv3tu/v7FYeXKggjig7p4EIorZLFBNcsnPNtWDtMGLEdwW7dK9OTP7ymkWKB/JMj0PW9clA8j6nRGMoqOQV1MCBEAhE4EIAI+iAhi72R1CH50DBz0YmlkALY40sluKoDNYac6CPWAGuklnPQAGHL/heXuMgM4EBGgMPfY7eENdYK+carBH2xhJ4jbFX+GhkiVDXEPWZGRL5TGTfegqHmD+BT/ARDlC1g/Z73PYNcNej1ZbwBO5KYsScsr0CW6LV4d3MrL9haP53hqN/wLCIf4Y3axnVRySNfYz8+1hvU832RqgO9FCRm2HeSDWOjR2gZzRtyqUwJvD+b8q1ya7aGdOqmxRl7HGmfVbNs4WT2GRXq3hW12Wi6k+rc8N7O1ef9Wy/xjVIe7vVRr2RNWvZsadOFabttFfJ9RwvoLHPpKaCKNWxG6HuJiTSnAqWlp1YsZDQKzJgHXQl8ZnqJtkXObVqGPGsfhDhI7WVRWdXJMRXauy7ONMneqgWcya4KteJdf9lN+EyjDWTdELUj4WlA8t83i2PR4xqMUaH0IijVosOSUSoxp/AHJJ3zUM1VT2ayC7PycB/jMBtKoY/FTnQw8Tpu8EI82mCJ4EZyT7TwPeJ9BLHKM1AcEraaXYT5+coqdppsud4XIWCjJUeC2ZVm3upKYm9WIBl56JZt1v11odm9fjNtDhb8BieYPFteAHH8BZO4Rxo4X1BFb4W0uL3UrG0XdqZTM3npmsewlwrPfoBYPWBBQ==</latexit>

A = torch.tensor(..., CSR)

X = torch.tensor(...)

T0 = torch.matmul(A, X)

T nbor = torch.nn.Linear(...)(T0)

T self = torch.nn.Linear(...)(X)

X 1 = torch.relu(T self+T nbor)

T1 = torch.matmul(A, X 1)

T nbor2 = torch.nn.Linear(...)(T1)

<latexit sha1_base64="MjbFuHCwcc8Yt9jcLtkzyz37wz0=">AAACmXicbVHLbtswEKTVRxL15bTHXIjIBXoyJB/SHNP2EvSUonUSwBQMilrZRPgQSMqNQOjer+m1/ZX+TWlbAeqkCxAY7uwuhztFLbh1afpnED16/OTp3v5B/Oz5i5evhoevL61uDIMp00Kb64JaEFzB1HEn4Lo2QGUh4Kq4+bTmr1ZgLNfqm2tryCVdKF5xRl1IzYfHMe6DMFAODFcLPCKrUjs7woTgGM+HSTpON4EfgqwHCerjYn44mJNSs0aGgUxQa2dZWrvcU+M4E9DFpLFQU3ZDFzALUFEJNvebz3T4bciUuNImHOXwJvtvh6fS2lYWoVJSt7T3uXXyf9yscdVp7rmqGweKbR+qGoGdxuvN4JIbYE60AVBmeNCK2ZIaysJWdieVK17bXvXtVna8IyPYI8I3LQQ/1MItPakKfRv4zodNBEbBd6alpKr0ZK10MySUdLNJ7sndzSdZ50ek5LYWtLWuFYCTyajrgiXZfQMegsvJODsZn3yZJGcfe3P20RE6Ru9Qht6jM3SOLtAUMfQD/US/0O/oKPoQnUeft6XRoO95g3Yi+voXpTvMgQ==</latexit>...Optional schedule in red Green indicates sparse tensor

<latexit sha1_base64="MjbFuHCwcc8Yt9jcLtkzyz37wz0=">AAACmXicbVHLbtswEKTVRxL15bTHXIjIBXoyJB/SHNP2EvSUonUSwBQMilrZRPgQSMqNQOjer+m1/ZX+TWlbAeqkCxAY7uwuhztFLbh1afpnED16/OTp3v5B/Oz5i5evhoevL61uDIMp00Kb64JaEFzB1HEn4Lo2QGUh4Kq4+bTmr1ZgLNfqm2tryCVdKF5xRl1IzYfHMe6DMFAODFcLPCKrUjs7woTgGM+HSTpON4EfgqwHCerjYn44mJNSs0aGgUxQa2dZWrvcU+M4E9DFpLFQU3ZDFzALUFEJNvebz3T4bciUuNImHOXwJvtvh6fS2lYWoVJSt7T3uXXyf9yscdVp7rmqGweKbR+qGoGdxuvN4JIbYE60AVBmeNCK2ZIaysJWdieVK17bXvXtVna8IyPYI8I3LQQ/1MItPakKfRv4zodNBEbBd6alpKr0ZK10MySUdLNJ7sndzSdZ50ek5LYWtLWuFYCTyajrgiXZfQMegsvJODsZn3yZJGcfe3P20RE6Ru9Qht6jM3SOLtAUMfQD/US/0O/oKPoQnUeft6XRoO95g3Yi+voXpTvMgQ==</latexit>...

<latexit sha1_base64="PQi9zDjrQzcP25Y90SBImL/4DQc=">AAAFnHiclVRbb9MwFM4KhVEu2+ARCVl0Q5uQpiYauzwgbW12kdi0Ae1aqekqx3Far85FsTNWWf55/Ah+A6/wjpNlNOkQ6ixVcs/5zvedm2OHlDBeq/2YKz14WH70eP5J5emz5y8WFpdenrMgjhBuoYAGUceGDFPi4xYnnOJOGGHo2RS37VEj8bevcMRI4Df5OMQ9Dw584hIEuTL1l0oXK5YH+TBlsoNr0YaRV8dkgKWw3CCClPYFGV1KCSrNC7FaW5Pq/6UE7z4CUIxsBAE9jOC4TuMkeAi52EvAIxXb6QvFASyrMqsaUGq+HUQTuYn8SP5f+tTDA6jQRoJO2ZSwCldtcid8nXsw6Xmmzq0hI7I4vubiCz5uydWiyvtiFWv3akBacF5HTISTns6U+EY+8RmkLxPmLGkjV+LMkxbNfLsq/cVqbb2WHnD3omeXqpadM7WRK5YToNjDPkcUMtbVayHvCRhxgiiWFStmOIRoBAe4q64+9DDriTQ3CVaUxQGqGvXzOUit+QgBPcbGnq2QSUVs2pcY/+Xrxtzd7gnihzHHProRcmMKeACSZwUcEmHE6VhdIIqIyhWgIYwg4urxFZicKxKyLOvrm7QrhTTU26aqTIbVY/YHfKimo5qu/FLoIVceH39DgedB3xGFuciu0RPW3ylVdSmWLYewkMIx42OKQdVYlomag131vUiR4mvg8sMIYz+ZqBRHzZNjKRqm+aGxKYvIU9dtDwnHt6CD+oGxb06BiruRse3v75nTbLn1y+j2TKNxMIU6Uf12Gsl23sLMnZ2t7R2pFkufXqO7l3NjXd9c3/y8Ud2tZys2r73W3mqrmq5tabvakXamtTRU+l76WfpV+l1+UzbLn8onN9DSXBbzSiuc8vkf0Xrzew==</latexit>

T
(0)
ij = Âik Xkj

8ikj Tnbor
ij = T

(0)
ik ⌦

(2)
kj

T self
ij = Xik⌦

(1)
kj

X
(1)
ij = ReLU(T self

ij + Tnbor
ij)

8ikj T
(1)
ij = X

(1)
ik ⌦

(4)
kj

8ijk Tnbor2
ij = Âik T

(1)
kj

<latexit sha1_base64="uXnXZsF7+3i8VdcPmivupUT/rYM=">AAADaHicbVLdbtMwFPZafkb56+ACIW6itUhcoKmJRLfebU3a7YKJIdZ1UlNVjnPSWnPiyHZGIysvwdNwC2/BK/AUuG02rR1HsnR0vs+fj893gpRRqVqtP1uV6oOHjx5vP6k9ffb8xcv6zqsLyTNBYEA44+IywBIYTWCgqGJwmQrAccBgGFy5C3x4DUJSnpyrPIVxjKcJjSjBypQm9Y9NP8ZqthQK+FwPsYi7QKdQaF/BXCml+5mEorB83ZzUG6291jKs+4ldJg1Uxtlkp9L0Q06yGBJFGJZyZLdSNdZYKEoYFDXfaKeYXOEpjEya4BjkWC+7Kaz3phJaERfmJMpaVu/e0DiWMo8Dw1z8QW5ii+L/sFGmooOxpkmaKUjI6qEoY5bi1mJGVkgFEMVyk2AiqOnVIjMsMFFmkmtK4TVNZdn1fNV2ba0NYxQz35RgnEmmaqb9yIzZ4IW2U2WQBL4THsc4CfWaE8XIGWv/1peGXWgzSypThnOpcgZWw2kWRiCEyHi/JOpvPFLHAiA5Fjgv9Mn56edCu573yW1vML9E0XBGFdyQ+t2+0/M2SC7nbKHUZdkt0e31jrxNtTtbU8odeY7b32CdmnGHLheY3dC8Tmf/oFOYvbI3t+h+cuHs2e299lencdgtN2wbvUO76AOy0T46RCfoDA0QQT/QT/QL/a78rdarb6pvV9TKVnnnNVqL6u4/1F0d9w==</latexit>

Fuse{

<latexit sha1_base64="k9Tf2jr/R2FqZQh4vDjB24MQk20=">AAACeXicbVFNb9QwEPWGr7J8tXDkEsgiVRxWySK1PVZw4Vgktq20iVaOM9m16i/Zk9LIyl/gCn+N38IFZzdIbMtIlp7fmxk/z5RGcIdp+msU3bv/4OGjvcfjJ0+fPX+xf/Dy3OnGMpgzLbS9LKkDwRXMkaOAS2OBylLARXn1qdcvrsE6rtVXbA0Ukq4Urzmj2FOTvJss95N0mm4ivguyASRkiLPlwWiZV5o1EhQyQZ1bZKnBwlOLnAnoxnnjwFB2RVewCFBRCa7wG7Nd/C4wVVxrG47CeMP+W+GpdK6VZciUFNfuttaT/9MWDdYnhefKNAiKbR+qGxGjjvufxxW3wFC0AVBmefAaszW1lGGYz06n6pobN7i+2doe79gI4xfhmw7CvNUK1z6vS30T9M5nBoOi4BvTUlJV+bx3umkSUrrFrPD535tPss5P8oo7I2jrsBUQJ7NJ14WVZLcXcBecz6bZ0fToyyw5/TgsZ4+8Jm/JIcnIMTkln8kZmRNG1uQ7+UF+jn5Hb6LD6P02NRoNNa/ITkQf/gCHZ8QK</latexit>}
<latexit sha1_base64="uXnXZsF7+3i8VdcPmivupUT/rYM=">AAADaHicbVLdbtMwFPZafkb56+ACIW6itUhcoKmJRLfebU3a7YKJIdZ1UlNVjnPSWnPiyHZGIysvwdNwC2/BK/AUuG02rR1HsnR0vs+fj893gpRRqVqtP1uV6oOHjx5vP6k9ffb8xcv6zqsLyTNBYEA44+IywBIYTWCgqGJwmQrAccBgGFy5C3x4DUJSnpyrPIVxjKcJjSjBypQm9Y9NP8ZqthQK+FwPsYi7QKdQaF/BXCml+5mEorB83ZzUG6291jKs+4ldJg1Uxtlkp9L0Q06yGBJFGJZyZLdSNdZYKEoYFDXfaKeYXOEpjEya4BjkWC+7Kaz3phJaERfmJMpaVu/e0DiWMo8Dw1z8QW5ii+L/sFGmooOxpkmaKUjI6qEoY5bi1mJGVkgFEMVyk2AiqOnVIjMsMFFmkmtK4TVNZdn1fNV2ba0NYxQz35RgnEmmaqb9yIzZ4IW2U2WQBL4THsc4CfWaE8XIGWv/1peGXWgzSypThnOpcgZWw2kWRiCEyHi/JOpvPFLHAiA5Fjgv9Mn56edCu573yW1vML9E0XBGFdyQ+t2+0/M2SC7nbKHUZdkt0e31jrxNtTtbU8odeY7b32CdmnGHLheY3dC8Tmf/oFOYvbI3t+h+cuHs2e299lencdgtN2wbvUO76AOy0T46RCfoDA0QQT/QT/QL/a78rdarb6pvV9TKVnnnNVqL6u4/1F0d9w==</latexit>

Fuse{
<latexit sha1_base64="k9Tf2jr/R2FqZQh4vDjB24MQk20=">AAACeXicbVFNb9QwEPWGr7J8tXDkEsgiVRxWySK1PVZw4Vgktq20iVaOM9m16i/Zk9LIyl/gCn+N38IFZzdIbMtIlp7fmxk/z5RGcIdp+msU3bv/4OGjvcfjJ0+fPX+xf/Dy3OnGMpgzLbS9LKkDwRXMkaOAS2OBylLARXn1qdcvrsE6rtVXbA0Ukq4Urzmj2FOTvJss95N0mm4ivguyASRkiLPlwWiZV5o1EhQyQZ1bZKnBwlOLnAnoxnnjwFB2RVewCFBRCa7wG7Nd/C4wVVxrG47CeMP+W+GpdK6VZciUFNfuttaT/9MWDdYnhefKNAiKbR+qGxGjjvufxxW3wFC0AVBmefAaszW1lGGYz06n6pobN7i+2doe79gI4xfhmw7CvNUK1z6vS30T9M5nBoOi4BvTUlJV+bx3umkSUrrFrPD535tPss5P8oo7I2jrsBUQJ7NJ14WVZLcXcBecz6bZ0fToyyw5/TgsZ4+8Jm/JIcnIMTkln8kZmRNG1uQ7+UF+jn5Hb6LD6P02NRoNNa/ITkQf/gCHZ8QK</latexit>}

<latexit sha1_base64="6YNxD8qHKxcmBLOpx+h16QoRrNU=">AAAGcnicbVRfb9s2EFfdNeu8bm22t+2FnTM0BRTPdtc0wWagjZ20DwvarUkTwHINijrZhClSIKk4LqEPstftU+177APsJNtL5IR8ORx/94d397swFdzYVuufO7W7n93b+Pz+F/UvH3z19cNHm998MCrTDE6ZEkqfh9SA4BJOLbcCzlMNNAkFnIXTXvF+dgHacCVP7DyFYULHksecUYuq0WbtQRDCmEtn+fRTypnNNOSDOlkeqSIgEaZBJYNuu7nHEkJlRErJ/x+mLqgooD81jZ0L6LpI05lPQAieGvAJFXwsuwykBe0TO+Fs6pMC0w0FZdPHuy2fcClBEwNpd+dZan2ScMmTLCET4OOJ7RYB86uIWmUyqoRkXDMBC7c+ibkQ3ePMQtRTmorr7tvXvRv+Cbo/JwlaKGm7QayUlcpCoc/rwzJeYADrKsd24oI4VJfoJHetZie1OfmRRBDTTFjCDcG86wuLdBwn1E7QMKFMKxcINQP9h5rlbmc3LzALXPGDwap6Q7Itnz8lrpIE2Tr56AILl9Zhl+M8HzlOslEnJ11yvpCf5SQoJwFzcz2lxGtN5wcig9xtBW8TGNOPbrv9FC0RW9pu4f2lXg9ARpXGjx41Ws1WechNob0UGt7yvBtt3j0OIsWyBFvLBDVm0G6lduiothy7kdeDDKuFLaZjGKAoaQJm6MpssXioibDwuiw+KbXXLRxNjJknISLLaq6/Fcrb3gaZjfeGjssUB0CyRaA4E8QqUpAAJ1oDs2KOAraHY66ETaimDOez6im6wAleZn25SLteSQOZKCrfLAua3/qNKoyGmaD6sqoNlZrii6lqV5Fv+39FWWgsTsDSvkhF8FBTPXdmQlMwzTGoBKzmzCepMrzYAlyOb8Kp1mpmmoilOcEx/3VnpyCuIdhDXC6GPHlvgQo7eVIuBGUnSK/SiFgs2Q1/jAqGUW6lEhKpHkiYMZUk6MwFxTdWE50POkN3Nd+NdjHVuJJSQecl9Umjs5UXXUEm4hYske69iu1rDSALLuTuzcnxb7nr9fvPe0i/CvJtHJ9NuIUV6OjgqHPYXwNVWbX0dnj4qr/u7Yzq5AA31pW7V/1O72gNdbWYVrD+/v6Lvf2CgO11ut0UPnSa7d3m7u+dxsu9JRXve997P3jbXtt74b303njvvFOP1Uztz9pftb/v/bvx3cbjjSVva3eWNt96lbPh/wc7KzRa</latexit>

T self
iu2

= Xiu3⌦
(1)
u3u2

<latexit sha1_base64="A7UicfOjeSHzVvQAkDyrcNd7uBk=">AAAGmnicbVRtb9s2EFbdzeu8t6b7uH3glgxNAcez3TRNsBloYyftsAXt1qQJYHkGRZ0s1hQpkFQcV9Av2a/Z1+0X7N/sKDtN5IT+Qp+ee+54d88FqeDGttv/3and/ejj+if3Pm189vkXX351f+3BW6MyzeCEKaH0WUANCC7hxHIr4CzVQJNAwGkw7bvvp+egDVfy2M5TGCV0InnEGbVoGq/Vtv0AJlzmlk/fp5zZTEMxbJDlkSoEEmIaVDLodVq7LCFUhqS8NT/A1DkVDvpjy9i5gF4eajprEhCCpwaahAo+kT0G0oJuEhtzNm0Sh+kFgrLpdzvtJuFSgiYG0t7W49Q2ScIlT7KExMAnse25gMVVRK0yGVZCMq6ZgAVtk0RciN5RZiHsK03FdfrOdXbD30NvO0nQQ0nb8yOlrFQWnL1ojMp4vgGsq5zYOPejQF0gSZG3W93UFuQHEkJEM2EJNwTzbiw80kmUUBujY0KZVrkv1Az0H2pW5Fs7hcMscO4Fw8vqjcimfPyI5JUkyIbvmMpOY+z8lOpkH0sChcPh08Q459m4+64oyPGf+WbnUYEG8q4gPXJ29R8RBfE/sPSVEi80ne+LDIk2/FcJTCiitx0asei/gb+fXJKNhg8yrAzI+P56u9UuD7l56Swv697yvB6v3T3yQ8WyBEeACWrMsNNO7Sin2nLsWtHwM6wqjgKdwBCvkiZgRnmZLxYZLSE2SJdNIqX1ukdOE2PmSYDIsuqr35zxtm/DzEa7o5zLFAdFskWgKBPEKuLEgpOvgVkxxwu2kWOuhMVUU4ZzXGUKz3HSl1lfLNJuVNJAxYrKM8uCFrc+owqjQSaovqhaA6Wm+MVUrZeRb3t/xegsFmdg6e9SETzQVM9zE9MUTGsCKgGrOWuSVBnutgWXk5twqrWamRZiaUFQDj9vbTmBG4I9xCVkyMM3Fqiw8cNycSgbowxLJ2KxZDf4GBUMo9wqORRcw5cwYypJkCyvKKMYdkf51YSvd9xc4+pKBZ2XK4KsdzcK1xVULG7LEpm/UZF9oQGkU0ORvzw++q3I+4PBkz7KtIJ8FUWnMbdwCTrcP+weDFZAVV0t2Q4Ong9W2a7JeEn3fNDtH66grhbYJWywt/d0d88JsLMqt5uXt91WZ6e183t3/Vl/KcV73jfe996m1/Gees+8l95r78Rjtb9qf9f+qf1b/7a+X/+l/usCWruz9Pnaq5z68f9v0kLR</latexit>

8iu2jT
(1)
ij = X

(1)
iu2

⌦
(4)
u2j

<latexit sha1_base64="xQOJQ4BPFH4XK3oDnkMva6X42pE=">AAAKZnictVZbb9s2FFa7emu9rWs3DHvYCzE7awekhmWgaQPsIYmdtANSJMulCRB5AUUd21woUSCpJC7H/c897H0/Y0eycpHjbe6C0rBEfeei75xDHipMBdem3f7jzt2P7tU+/uT+g/qnn33+8ItHj798q2WmGOwzKaQ6DKkGwRPYN9wIOEwV0DgUcBCedHP5wSkozWWyZ8Yp9GM6TPiAM2oQOn58788ghCFPrKFhJqg6d9b3W89Z7OyKdey3yg8RVyc4AiNTlQkoHn4n35NmMKLGrrpmPj8srnu/2KftHyZIsBXDkCLQKQEUJqFUxUMQSaOvgR1Eg2DynphHl+/h+SXXN3BuisjthlSgzSsFkDi7ueuq0h05pmJNZODsDqSuICJoMhRASrrHnASqQJpzm+4dW+4qZiX/yf2CeQV833vppJkdt6eIbWcqFcjqp8RgVYEZN4f8ivukJv8Y9ox8XrctSjZX+Mjc/8+Uzl3IWwddEhdzEe80Z60UixFVzC81Dv9FdpHweP6EX5Nu5TZFvqKMgfuga62y1U6pmN5qmzyGkidK3XsIZ0Tx/y1nUg+lMTIu2AeQRFe9rH78qNFutYtBbk78ctLwyrGNDTFF3yyLITFMUK2P/HZq+pYqwxmusXqQaUgpO6FDOMJpQmPQfVvwdWQBkYgMpMJ/YkiB3s7C0ljrcRyiZkzNSFe9mcHLvuVJmhlI2MTZIBPESJL3ehJxhZtBjHFCmeIYAWEjqijLt0nFU3TKU10wWySYPQGL5yxS9KxvzydEbx9FTv8DRLEwO4wr4hUeeG6KSizW8JN3bmbGq2qXS+o6Gkp5ghJdRWek7DIBFTBHjJSitM+pCB4qqsZWj2gKujUEGYNRnC2SVGqen9k8Gd5Up0rJM91CXeoIWSA/PntGzIhrgoXCamryZNcAFWb0hNAkItKMQJHCiBhM2Q1/jAqGb0FQQDI0IxsMQnmOzJ3F7YCSBM6YjGN0ZoM8jCJkVHFHnb4NLp5sw3e2GURcp4KOtRljS2x0mm7KwQ4MQLkjHy0V5Rpyy5YP+C0SaKx4ajR/B81A8eHIFKSbLlhE11jbCAb45TNpF7tyMGmlrxQdO/t6782ms91e73l3yVU1twaDgxE3cKG0sbbRWe9NKXWxMrmnyZlVeltfX+1NezugKl4DPrxyt9rrdDemtN7g8o66UmGXK9V6y8svXi477FH+dEe6OXnbaflLraWfO42VtbJb3fe+9b7znnq+98Jb8V57296+x2q92q81XTMP/qo/rH9d/2aievdOafOVVxl18jdvW5vw</latexit>

Â X T (0) ⌦(2) Tnbor . . . Tnbor2

i LS Rep hÂii Rep hTii
. .

u0 Intersect Intersect hT (0)
i i LS hTnbor

i i
u1 Rep LS Intersect Intersect hTnbor

l i

u2 hÂu1
i hXu1

i hT (0)
m i LS Reduce

. .

val val val Reduce val Reduce

Figure 6. Compilation flow of FuseFlow. (a) PyTorch model. (b) Einsum expressions with optional user schedules (red) and

sparse formats (green). (c) Cross-expression fusion of Fuse regions yields fused Einsum subgraphs and a partial-order graph.

(d) Fusion tables encode iteration (rows), tensors (columns), and IR nodes/streams (cells). (e) Codegen emits a SAMML fused

dataflow graph; evaluation targets a dataflow simulator, FPGA, or a heuristic model (Section 8).

PyTorch, TensorFlow, ...

MLIR: Linalg + SparseTensor

S
c
h
e
d
u
l
i
n
g
L
a
n
g
u
a
g
e FuseFlow

Compiler

Collection of

Fused CIN Representation

SAMML IR

FPGA Backend
Comal

Simulator

Dataflow Accelerator Backend

HW-aware

SAMML IR [40, 42]

CGRA Dataflow Graph IR

CGRA Bitstream [40, 41]

HW constrai-

nts [33, 40]

Signal

elaboration

& memory

[33, 40]

CGRA

[40, 41]

Mapping

Pipelining

& PnR

[40, 49]

[41]

MPACT [24], ...Torch-MLIR [47],

Cross-Expression

Kernel Fusion (Sec. 5)

Lowering

(Sec. 6)

Optimizations

(Sec. 7)

Figure 7. System overview of FuseFlow, where blue denotes

new contributions.

4.2 Compilation Flow
FuseFlow then applies cross-expression kernel fusion to user-

marked fusion regions (denoted by Fuse{} in Figure 6b), pro-

ducing a fused Einsum representation (Section 5). The fused

Einsum representation includes fused components that form

connected subgraph (as shown in the dashed fused region

in Figure 6c) along with a partial order graph that encodes

index constraints. Within the connected subgraph, the ar-

rows indicate direct producer-consumer expression fusion.

To generate this representation, FuseFlow inlines producer

results into their consumers across kernel boundaries while

building the partial order graph (Figure 6c). Partial order

graph constraints are derived from the user-schedules (red)

and sparse storage formats (green) (from Figure 6b).

To lower the fused expressions, FuseFlow introduces a

new IR called fusion tables (Figure 6d). This representation
addresses the complexity of lowering multiple fused expres-

sions to fused dataflow graphs. The fusion table encodes: the

fused iteration order based on the partial order graph in its

rows (shown in Figure 6d in light pink), the fused expression

which is implicit in the tensor order of its columns (shown

in off-white), and IR nodes along with named pointers to

intermediate streams before they are materialized in their

cells (shown in cool gray). Therefore, fusion tables represent

the fused tensor computation in a tabular format before code

generation, allowing for factored iteration with interleaved

input iteration and computation. Because prior work [31, 32]

compiles single kernels, they do not scale to face similar

challenges (i.e. requiring references to temporary streams)

that FuseFlow address with its fusion table IR.

FuseFlow generates SAM dataflow graphs with ML primi-

tives, which we call SAMML. FuseFlow applies user-guided

or autotuned parallelization, sparsity blocking, and dataflow-

order selection, and provides a fast heuristic to estimate

FLOPs/bytes for early pruning. It then executes in Comal, a

cycle-accurate simulator within the open-source DAM simu-

lation framework [81], or maps to FPGA backends.

Full Compilation Stack. Figure 7 shows the full compi-

lation stack of FuseFlow. Blue components are new contri-

butions of this work and yellow components leverage prior

work for the frontend and lower-level compilation paths to

FuseFlow: A Fusion-Centric Compilation Framework for Sparse Deep Learning on Dataflow ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA.

<latexit sha1_base64="rXdyEOSidEStqxeGiiylk/YelWI=">AAAEAHicjVLLbtNAFHVqHiU8msKSzYi0CDZRHEHaLJCa2Em7oGoRTRMUR9F4PE6GjB/yjEut0Wz4GnaILVu+gr9h7LhVnSLBSCNd3XvuvWfmHCeihPFm83dlQ79z9979zQfVh48eP9mqbT89Z2ESIzxEIQ3jsQMZpiTAQ044xeMoxtB3KB45SzOrjy5wzEgYnPE0wlMfzgPiEQS5Ss1qv2wf8kU+xwkvxQjGfg+TOZbC9sIYUjoT5PNSStDNAglevgOg3GKGIT2MYdqjierqKVgGN2diqeC2Xf2PBQopAbCuN3TzIf/ak3epBdVZrd5sNPMDbgdGEdS14pzOtjd2bTdEiY8DjihkbGI0Iz4VMOYEUSyrdsJwBNESzvFEhQH0MZuKnIoEuyrjAkVe3YCDPHuzQ0CfsdR3FDJ7AFuvZcm/1SYJ9/anggRRwnGAVou8hAIegkw64JIYI05TFUAUE8UVoAWMIeJK4NIk94JErGB9uaJdLdFQ/qHqmQwrwwRzvlBiqD9WdSmMiKtKgL+g0Pdh4IqSDHLSmgr7WpS6IcWO7RIWUZgynlIM6q0dmW1zsac8mSPFx9DjhzHGQSagFEdnx++lMC3rrdmWZeSJ540WhOMr0KA3aPWtNVDZCsW0fr9rrU+74bZiXNdqmYM11LH6b9fMzHgFszqdvf2OVMYy1m10OzhvNYx2o/3hTf2gV1hsU3uuvdBeaYa2px1oR9qpNtRQ5XXlpDKufNK/6t/07/qPFXSjUvQ800pH//kHVyZYQw==</latexit>

8ijk Aij = Bik Ckj

8ikj Dij = Aik Bkj

<latexit sha1_base64="uXnXZsF7+3i8VdcPmivupUT/rYM=">AAADaHicbVLdbtMwFPZafkb56+ACIW6itUhcoKmJRLfebU3a7YKJIdZ1UlNVjnPSWnPiyHZGIysvwdNwC2/BK/AUuG02rR1HsnR0vs+fj893gpRRqVqtP1uV6oOHjx5vP6k9ffb8xcv6zqsLyTNBYEA44+IywBIYTWCgqGJwmQrAccBgGFy5C3x4DUJSnpyrPIVxjKcJjSjBypQm9Y9NP8ZqthQK+FwPsYi7QKdQaF/BXCml+5mEorB83ZzUG6291jKs+4ldJg1Uxtlkp9L0Q06yGBJFGJZyZLdSNdZYKEoYFDXfaKeYXOEpjEya4BjkWC+7Kaz3phJaERfmJMpaVu/e0DiWMo8Dw1z8QW5ii+L/sFGmooOxpkmaKUjI6qEoY5bi1mJGVkgFEMVyk2AiqOnVIjMsMFFmkmtK4TVNZdn1fNV2ba0NYxQz35RgnEmmaqb9yIzZ4IW2U2WQBL4THsc4CfWaE8XIGWv/1peGXWgzSypThnOpcgZWw2kWRiCEyHi/JOpvPFLHAiA5Fjgv9Mn56edCu573yW1vML9E0XBGFdyQ+t2+0/M2SC7nbKHUZdkt0e31jrxNtTtbU8odeY7b32CdmnGHLheY3dC8Tmf/oFOYvbI3t+h+cuHs2e299lencdgtN2wbvUO76AOy0T46RCfoDA0QQT/QT/QL/a78rdarb6pvV9TKVnnnNVqL6u4/1F0d9w==</latexit>

Fuse{
<latexit sha1_base64="k9Tf2jr/R2FqZQh4vDjB24MQk20=">AAACeXicbVFNb9QwEPWGr7J8tXDkEsgiVRxWySK1PVZw4Vgktq20iVaOM9m16i/Zk9LIyl/gCn+N38IFZzdIbMtIlp7fmxk/z5RGcIdp+msU3bv/4OGjvcfjJ0+fPX+xf/Dy3OnGMpgzLbS9LKkDwRXMkaOAS2OBylLARXn1qdcvrsE6rtVXbA0Ukq4Urzmj2FOTvJss95N0mm4ivguyASRkiLPlwWiZV5o1EhQyQZ1bZKnBwlOLnAnoxnnjwFB2RVewCFBRCa7wG7Nd/C4wVVxrG47CeMP+W+GpdK6VZciUFNfuttaT/9MWDdYnhefKNAiKbR+qGxGjjvufxxW3wFC0AVBmefAaszW1lGGYz06n6pobN7i+2doe79gI4xfhmw7CvNUK1z6vS30T9M5nBoOi4BvTUlJV+bx3umkSUrrFrPD535tPss5P8oo7I2jrsBUQJ7NJ14WVZLcXcBecz6bZ0fToyyw5/TgsZ4+8Jm/JIcnIMTkln8kZmRNG1uQ7+UF+jn5Hb6LD6P02NRoNNa/ITkQf/gCHZ8QK</latexit>}

(a) Unfused expressions

<latexit sha1_base64="Oq703JYgjOPClUIPo7NfDR79K8Y=">AAAGyHicbVRbb+NEFPZmISzhtoVHXgaSqouUhjjQbiuwtE3S7gpRsbDtdqU4isbjcTzKeMaaGTfNWvPCv+Mn8Ct4hTeOHffitH46PvOd+/lOkHKmTb//96PG4w8+bH705OPWJ59+9vkXT7e+fKtlpgg9J5JL9S7AmnIm6LlhhtN3qaI4CTi9CBaj4v3ikirNpDgzq5ROEzwXLGIEG1DNthqBH9A5E7lhi/cpIyZT1E5aqPqEDCkKIQ0sCPXc3gFJEBYhKqXuDUxeYl5Av+9ps+LUy0OFl11EOWeppl2EOZsLj1BhqOoiEzOy6KIC4wUck8U3+/0uYkJQhTRNvd0fUtNFCRMsyRIUUzaPjVcEtLcRlcxEWAtJmCKcrt12UcQ4904zQ8ORVJjfde/e9a7Ze+r9mCRgIYXx/EhKI6Shhd62pmU8X1Poq5ibOPejQF6BE5v3e4PUWLSNQhrhjBvENIK8W2uLdB4l2MRgmGCiZO5zuaTqD7m0+e6+bW2jquuayBT6faVjFhnP3evtQVvRqvolyfSm4G10JlMoe3mj8YvyJ9etn6Jnwv0O5bUKUMcv0ijXBBLPL7BKhtBPagsc9IXPcpbN3GzWtxYdrX8s8pB/YzKSkr9UeDXkGVh1hjslqG87Fo1mOUioMOnYn1pVYi2firC2TrOn7X6vX37ovuBWQtupvtezrcenfihJlsDCEI61nrj91ExzrAyDGduWn8EMYHHwnE5AFDihepqXOcNIQBPCOFU5UlRq71rkONF6lQSALGe0+VYoH3qbZCY6mOZMpLBWgqwDRRlHRqKCWsATRYnhKxBg6AxyRSTGChPY+rqn8BJ4UWV9tU67VUsD+M1rZZYNtQ+WUYfhIONYXdW1gZQLeNF17XXkh+qvKQuNgT2o7ItUOAsUVqtcxzilujenMqFGMdJFqdSsuC1MzO/DsYIN1j3AYlvs9M+7u8U50AhmCCdLo503hmJu4p3yzEgTA2lLI2SgZff8EcwJRHmIoEBzeBF0SWSSgLO8RgU7GUzz2y1vu7DbPhy6lONVeVBQe9CxxVSA33BbS2T+RkbmpaJUFIyw+auz019tPhqP90ZA6hrytyi6iJmh16CT4cngeLwBqnOr8nZ8fDTe9HaHt5W7o/FgdLKBuj1317Dx4eHzg8OCgO4m3e4Lbwc9d7+3//ug/WJYUfGJ87XzrfPMcZ3nzgvnlfPaOXdI46/GP41/G/81f2mmzWVztYY2HlU2Xzm1r/nn/w6kUfg=</latexit>

8iu1u0Aiu1 = B0
iu0

Cu0u1

<latexit sha1_base64="RvvcY/b3iYNoXnfoZ5lEasTF3Y0=">AAAGwXicbVTdbts2FFbdzmu9v2a73A1XJ0gHOJ7lLWmCTkBjO2kvFqxbk6aAZRgURVmsKVIgqTguoZfbW+wNdrs9wY5k5UdO5Jvjw+/8n+8EKWfa9Hp/P2g8fPRZ8/PHT1pffPnV19883fj2vZaZIvSMSC7VhwBrypmgZ4YZTj+kiuIk4PQ8mA+L9/MLqjST4tQsUzpJ8EywiBFsQDXdaIz9gM6YsIbNP6WMmEzRfNxC1SdkSFEIaWBBqOd290mCsAhRKXWuYfIC8wL6U1ebJaeeDRVedBDlnKWadhDmbCY8QoWhqoNMzMi8gwqMF3BM5j/s9TqICUEV0jT1dn5OTQclTLAkS1BM2Sw2XhEwv4moZCbCWkjCFOF05baDIsa5d5IZGg6lwvy2e/e2d80+Ue+XJAELKYznR1IaIQ0t9HlrUsbzNYW+ipmJrR8F8hKc5LbX7acmR1sopBHOuEFMI8i7tbJIZ1GCTQyGCSZKWp/LBVV/ykVud/by1haquq6JTKHflzpmkfHc3e4utBUtq78kmVwXvIVOZQplL641flH++Kr1E/RcuD8iW6sAbfpFGuWaQOL2HKtkAP2keYGDvvCpZdnU/ZjnaATixxx56HCly/1rs6GU/LXCywHPwHJzsL09taXVJvxetqqMWj4VYW2Ppk/bvW6v/NBdwa2EtlN9b6cbD0/8UJIsgU0hHGs9dnupmVisDIPh5i0/g+bDxuAZHYMocEL1xJaJwixAE8IcVTlLVGpvW1icaL1MAkCWw1l/K5T3vY0zE+1PLBMp7JMgq0BRxpGRqOAUEERRYvgSBJg2g1wRibHCBNa97im8AEJUWV+u0m7V0gBi81qZZUPze8uow3CQcawu69pAyjm86Lr2KvJ99deUhcbA8Cv7IhXOAoXV0uoYp1R3Z1Qm1ChGOiiVmhVHhYnZXThWsLq6C1icF8v8685OcQc0ghnCrdJo+52hmJt4u7wv0sTA1tIIGWjZHX8EcwJR7mMm8BteBF0QmSTgzNY4kI/7E3uz2m0XFtqHC5dyvCwvCWr3N/NiKkBsOKol0r6TkXmtKBUFDXL75vTkt9wOR6PdIbC5hvw9is5jZugV6Hhw3D8arYHqhKq8HR0djta93SJs5e5w1B8er6Fu7twVbHRw8GL/oCCgu063u8L7ftfd6+790W+/GlRUfOx87zxznjuu88J55bxx3jpnDmn81fin8W/jv+awyZppU62gjQeVzXdO7Wva/wG9Jk/M</latexit>

8iu1jDij = Aiu1B00
u1j

(b) Fused Einsums

i ju0u1

<latexit sha1_base64="/6CRE4iaAIMODJoC3bRMc58MqqM=">AAAENXichVJLb9NAEHYaHiW8WjhyWZGGcqrsCPo4ILWxk/ZARRFtUylOrc16nWyzfsi7Lo1We+MKf4ffwoEb4sqVI+PEreoUqStZGs9838y3O98g4UxI0/xRWajeuXvv/uKD2sNHj588XVp+diziLCX0iMQ8Tk8GWFDOInokmeT0JEkpDgecdgdjO693z2kqWBwdyklC+yEeRixgBEtIeUt/3RDL0bTPIL5QXZyGLcqGVCs3iFPMuadY5lmZZ55pjRz4O9Po1TuEyjw7jvluiictngG1tTplmcCwPQUBdNC3MFZzoJUPcd1a43ZV4zMGWNS+UpRrG98yJafNJtS8pbq5Zk4PuhlYRVA3inPgLS80XD8mWUgjSTgWomeZiewrnEpGONU1NxM0wWSMh7QHYYRDKvpqKkWjBmR8BOLhiySaZq8zFA6FmIQDQOYXEPO1PPm/Wi+TwWZfsSjJJI3IbFCQcSRjlO8b+SylRPIJBJikDLQiMsIpJhJcUerkn7NEFKovZrJrJRlgOg7XFBRcFg3lCJYBbwx1raxEQiWin0kchjjyVWkNutfsK/dqKXVLqxXXZyLheCLkhFNUb67ofJpPAzDyFKk+xYHcTSmN8gVqtXe4/14r23He2uu6jPwQBN0Rk/QS1Gl1mm1nDlS2QtGt3d5x5rtdc1vRbsdp2p051D68t2/nZryEOVtbG5tbGoxlzdvoZnDcXLPW19Y/vqlvtwqLLRovjJfGa8MyNoxtY884MI4MUjmtfKl8rXyrfq/+rP6q/p5BFyoF57lROtU//wBfBW2P</latexit>

8iu1u0j Dij = B0
iu0

Cu0u1
B00

u1j

<latexit sha1_base64="kYDc0rPFdA7RvI9Z1c4eOG1w/nk=">AAADXHicbZLPb9MwFMe9dsDoGOtA4sKBiG4Sp6qJRNdy2pq024FpQ6zrpKaqHMdprTl2ZDtlkZUjfw1X+GO48Lfg9AfQjidFennfj5/fDwcJJVI1Gj+3SuXtR4+f7Dyt7D7be75fPXhxI3kqEO4jTrm4DaDElDDcV0RRfJsIDOOA4kFw5xb6YIaFJJxdqyzBoxhOGIkIgsqExtU3lwxbM0hJaCmeGHxiJGpJLtQHy/cr42qtUW/MzXro2EunBpZ2NT4oHfkhR2mMmUIUSjm0G4kaaSgUQRTnFT+VOIHoDk7w0LgMxliO9LyT3DoykdCKuDAfU9Y8+u8JDWMpszgwZAzVVG5qRfB/2jBVUWukCUtShRlaXBSl1DRtFWOxQiIwUjQzDkSCmFotNIUCImWGt5YpnJFELqu+X5RdWSvD7IaaNiU2y2ATNdV+FPB7o+faTpRRGP6CeBxDFmq/qHSexCD50Blpf/Wna3auD/2QyITCTKqMYqvmHObFbSGOzL7npP7MI3UmMGZnAma5Pr+++Jhr1/Peu818nbyMosGUKLyCep2e0/U2IJdzWmTq0PQP6Ha7p95mtgEUcQeTyd90p57j9jaoCzPv0OUC0hXmtdvHrXZuHpa9+YweOjdO3W7Wm5+c2klr+cR2wGvwFrwDNjgGJ+AcXIE+QOAr+Aa+gx+lX+Xt8m55b4GWtpZnXoI1K7/6DTPTFuo=</latexit>

One valid topological sort:
<latexit sha1_base64="TXWF9JIF8Vw6Eg9P+jczUiHRGik=">AAADd3icbVJdb9MwFPVaPkb56uCRByKaoT1NSSS6laetSbs9MDHEuk5qqspxnNbMiSPb2RZZ+S/8Gl7hlZ/CG04/gKZcydLxucfH19c3SCkR0rJ+btXq9+4/eLj9qPH4ydNnz5s7Ly4FyzjCA8Qo41cBFJiSBA8kkRRfpRzDOKB4GFy7ZX54g7kgLLmQeYrHMZwmJCIISk1Nmu+JYfqcTGcScs5uTcPMJra5yVlV7ktj0mxZ+9Y8jE1gL0ELLON8slPb9UOGshgnElEoxMi2UjlWkEuCKC4afiZwCtE1nOKRhgmMsRir+SMLY1czoRExrlcijTn77wkFYyHyONDKGMqZqOZK8n+5USajw7EiSZpJnKDFRVFGDcmMsmNGSDhGkuYaQMSJrtVAM8ghkrqva07hDUnFsuq7RdmNtTL0t1H9TIH1PyVTOVN+FLA7nS+UnUqdSfAtYnEMk1D5ZaVzEy0pRs5Y+audatmFMv2QiJTCXMicYqPlmEV5W4gjPQpzpfrMInnCMU5OOMwLdXpx9qFQrue9c9vFuvJjFA1nROKVqN/tOz2vInIZo6VTl2Z/hG6vd+xV3YaQx11Mpn/tjj3H7VdUZ7rfocs4pCuZ1+kcHHYKPVh2dYw2waWzb7f325+c1lF3OWLb4BV4A/aADQ7AETgF52AAEPgKvoHv4EftV/11/W19byGtbS3PvARrUbd/A0T/H+w=</latexit>

i ! u1 ! u0 ! j

(c) Fused Einsum w/ partial or-

der graph

Figure 8. The input (a) with sparse matrix 𝐵 stored in CSR

format and equivalent output representations (b) and (c) of

our automated cross-expression fusion algorithm.

hardware. Our contributions focus on algorithms for fusion

and other optimizations (PyTorch→ SAMML graphs), where

the challenges lie for performant ML with sparse tensors on

dataflow. We describe our compiler implementation and its

surrounding software ecosystem in more detail in Section 7.

Scheduling Language. FuseFlow exposes fusion gran-

ularity, dataflow ordering, parallelization, and a performance

heuristic through explicit user schedules, enabling the design-

space exploration in Section 8. Users specify fusion via Fuse{}
regions (i.e. denoted in MLIR with functions), dataflow order

via modifying Linalg affine maps, and other parameters via a

command line interface. While this control is essential for op-

timal performance, future work includes autoscheduling to

determine fusion schedules for common sparse ML patterns.

5 Cross-Expression Fusion Algorithm
Our solution for automatically generating fused code relies

on FuseFlow’s cross-expression fusion algorithm. It fuses

across distinct expressions while preserving correctness and

efficiency in sparse iteration. Once fusion regions are sched-

uled, FuseFlow’s algorithm produces a collection of fused

Einsum expressions and a partial order graph for each fusion

region that serves as the foundation for further optimization.

Sparsity-specific challenges arise when multiple expres-

sions each impose their own traversal order over many

sparse tensors. Efficient sparse tensor iteration requires con-
cordant traversal, a fused iteration order compatible with

each operand’s nativemode order (storage order) [80]. Travers-

ing a sparse tensor against its storage format (e.g., column-

wise over a CSR matrix) is discordant and is often asymp-

totically worse. Ignoring this critical aspect of sparse ten-

sor traversal can lead to incorrect code [37] or suboptimal

performance due to expensive indirect lookups and tensor

reformatting [37, 80].

Our approach treats ordering constraints as first-class:

(i) user-specified dataflow order constraints of each local

expression—unspecified orders remain free—and (ii) per-

tensor mode order required by storage format (e.g. CSR

requires 𝑖 → 𝑗 , denoted as [𝑖, 𝑗] = [0, 1]). For example,

suppose we fuse: 𝐴𝑖 𝑗 = 𝐵𝑖𝑘𝐶𝑘 𝑗 and 𝐸𝑖 𝑗 = 𝐵𝑖𝑘𝐴𝑘 𝑗 , both with

inner product dataflow (𝑖 → 𝑗 → 𝑘). Simple index substitu-

tion conflicts with 𝐴’s required mode orders [0, 1] vs. [1, 0],
forcing discordant traversal. When a tensor is used multi-

ple times, FuseFlow treats each use as a distinct tensor view
(denoted with primes (in Figure 8b); each view is annotated

with its required mode order.

We therefore introduce a fusion algorithm that extends

index substitution [15] with ordering constraints maintained

in a directed graph called a partial order graph (POG).

While processing each local expression, FuseFlow inserts

edges into the POG to represent both dataflow order and

mode order constraints so that global consistency is main-

tained across the fused region.

The POG allows FuseFlow to track index order constraints

of a fused expression based on the mode order of the input

sparse tensors, and final output tensor as well as the local

dataflow order of each expression to be fused. This cross-

expression fusion is achieved in several steps, as shown in

Figure 8. For each expression to be fused:

1) Rename local index variables: For each tensor in

the expression, FuseFlow replaces all local reduction indices

(those not on the left-hand side) with fresh indices (denoted

as 𝑢-indices in Figure 8b) and adds POG edges to enforce

each sparse tensor view’s mode order constraints (i.e. 𝑖 → 𝑢0
based on 𝐵′ in Figure 8b).

2) Build fused Einsum producer-consumer edges: For
each tensor, FuseFlow connects producer uses with their

consumers, as shown by the arrows in Figure 8b, while sub-

stituting index variables. This fused Einsum expressions rep-

resentation is similar to the ideas presented by [82].

3) Propagate order constraints: As each producer-to-

consumer edge is added, FuseFlow inserts directed edges

in the POG between indices that have an outer-to-inner

ordering relationship.

4) Handle multiple tensor uses: For any tensor used

multiple times, FuseFlow assigns a distinct view to each use,

annotating it with the required mode order. Equivalent views

are merged, where equivalence means: (i) identical mode-

order sequences and (ii) equivalent index maps. If distinct

views of the same tensor induce conflicting ordering con-

straints (detected as a cycle in the POG) and no concordant

topological order exists, FuseFlow materializes a permuted

copy of the tensor (a higher-order transpose) for one of the

views to break the cycle.

By applying the above steps to every expression to be

fused, we accumulate a unified index-space representation

with all necessary constraints. Throughout this process, the

POG ensures that global index ordering remains consistent

with all mode orders and user-scheduled dataflow orders en-

countered. If the graph remains acyclic, FuseFlow performs

a topological sort to produce all valid global dataflow or-

ders that respects all constraints. FuseFlow can traverse the

ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA. Rubens Lacouture et al.

fused Einsum representation and emit a single, fully fused

Einsum (Figure 8c), equivalent to the fused representation

in Figure 8b The full algorithm can be found in Section B.4.

6 Lowering with Fusion tables
To facilitate code generation, we introduce fusion tables, a
tabular lowering IR that memoizes intermediate streams and

defers node creation. It provides named pointers to each com-

ponent in the final dataflow graph, allowing for references to

components that have not been created yet. Programming a

dataflow machine differs from typical loop-based paradigms

in that it relies on a spatial connection topology of opera-

tors/nodes and data rather than iterative control flow. During

lowering, a dataflow compiler maps how dataflow primitives

are connected to assemble the final dataflow graph. Fusion

tables capture these connections by treating each operator

as a cell in a table with pointers representing data movement

through nodes. Fusion tables also enable fusion across multi-

ple expressions to target a dataflow system. We first provide

details on the fusion tables (Section 6.1) and show how they

are used by FuseFlow for code generation (Section 6.2).

6.1 Fusion Table IR
As discussed in Section 3, our compiler must dynamically ad-

just and interleave the topology of iteration and computation

pipelines. We use a fusion table IR to accomplish this task. A

fusion table allows the compiler to defer materializing the

final graph and instead work with a named, structured repre-

sentation. The compiler can assign placeholders to dataflow

nodes that are not yet created, enabling later pointers (refer-

ences) to those future nodes by name. In essence, the fusion

table provides a spatially organized plan of the fused index

iteration and operations, which can be manipulated freely

before committing to a final dataflow graph.

Fusion Table Structure. A fusion table can be thought of

as a two-dimensional grid. Rows represent index variables

or value results, which are ordered by fused iteration index

order. For example, in Figure 9a the table contains rows that

represent the iteration order of the expression (𝑖 → 𝑘 → 𝑗)

with the last row for value computation. Columns represent

tensor expressions, with each operand or intermediate result

in the fused expression assigned to its own column. By read-

ing across a given row, we see all tensors involved at that

loop level. In other words, rows slice the computation by

control (loop levels), while columns slice it by data (tensors).

Cells occupy the intersection of a row and a column; each

cell represents either an operation to perform or a pointer

to another cell’s operation. A cell can be one of two types:

1) Primitive cell: creates a new dataflow node corre-

sponding to a fundamental operation as defined in Section 2.

Placing a primitive cell in the table is akin to planning the

instantiation of that dataflow node in the SAMML graph.

2) Reference cell: points to an existing cell that reuses

an already generated node (e.g., ⟨𝑇 0

𝑖 ⟩ in Figure 9c) or passes

through values when an index variable is not needed for the

current operation (e.g. ⟨𝑇 0

𝑘
⟩ in Figure 9c).

By ordering indices and operations in this structured grid,

the compiler spatially captures the relationships between

tensor computations and their iteration space. Figure 9 il-

lustrates this concept using a sparse matrix multiplication

(SpMM) example. Figure 9a shows an empty fusion table

for the SpMM kernel 𝑇 0

𝑖 𝑗 =
∑

𝑘 𝐴𝑖𝑘 × 𝑋𝑘 𝑗 with 𝑖 → 𝑘 → 𝑗

iteration order. Figure 9b shows the table partially filled as

the compiler processes the fused Einsum expressions step

by step. Note that some cells are already referencing nodes

(marked by angle brackets) that have not been materialized

yet, indicating future connections (i.e. ⟨𝐴𝑣𝑎𝑙 ⟩ referencing

⟨𝐴 𝑗 ⟩). In Figure 9c, the fusion table is fully populated after

handling all operations. Finally, Figure 9d depicts the final

dataflow graph generated from the completed fusion table,

with the color coding showing how each cell in the table

maps to a component in the final graph.

Fusion Table Construction. To understand how fusion

tables are constructed by FuseFlow, we walk through the

fusion table construction for the SpMM example shown in

Figure 9. FuseFlow populates fusion tables by processing

each operation in the input program one by one. FuseFlow

uses several steps for each operation, as detailed below:

1) Insert level scanners and value nodes: For every

input tensor view, FuseFlow assigns level scanner cells and

value cells in a top-down fashion following the dataflow

order. If an input tensor is not the result of a prior operation,

a value cell is placed. In Figure 9c, LS cells (in dark green) for

𝐴𝑖 , 𝐴𝑘 , 𝑋𝑘 , and 𝑋 𝑗 are created, along with the corresponding

value cells (labeled "Val" in light green).

2) Insert repeat and compute nodes: When processing

intermediate tensor views, FuseFlow identifies index vari-

ables missing from each input operand’s tensor view and

assigns Rep nodes for each of these cases. Repeat nodes’ in-

puts include the stream being repeated and the repeat signal.

The computation pipeline for the intermediate tensor view

is also assigned at this point, meaning ALU and reduction

nodes (if applicable) are inserted. In Figure 9c, the compute

pipeline cell (in orange) is inserted for 𝑇 0
.

3) Handle higher-order reductions: When a higher-

order reduction is encountered, the compiler updates the

relevant cells with the reduction outputs. For example, in

Figure 9c, a first-order higher-order reduction (e.g., ⟨𝑇 0

𝑗 ⟩)

is applied: it consumes a value stream and two coordinate

streams. It produces a reduced value stream along with a

final reduced output coordinate.

4) Insert stream merging nodes: After processing all

tensors, the compiler identifies index variables shared across

multiple tensor views. It then creates stream merging nodes

(intersect or union) by relocating existing level scanner cells

FuseFlow: A Fusion-Centric Compilation Framework for Sparse Deep Learning on Dataflow ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA.

𝐴̂𝑖𝑘 𝑋𝑘 𝑗 𝑇 0

𝑖 𝑗

𝑖
Rep(root,

⟨𝐴̂𝑖 ⟩)
⟨𝐴̂𝑖 ⟩

𝑘 LS(⟨𝐴̂𝑖 ⟩) LS(⟨𝑋𝑖 ⟩) ⟨𝑇 0

𝑖
⟩

∩𝑘

𝑗 R() LS(⟨𝑋𝑘 ⟩)

∑
𝑘

(
⟨𝐴̂val⟩

·⟨𝑋val⟩
)
crd

0

val V(⟨𝐴̂ 𝑗 ⟩) V(⟨𝑋 𝑗 ⟩)

∑
𝑘

(
⟨𝐴̂val⟩

·⟨𝑋val⟩
)
val

(a) Initial empty fusion table

𝐴̂𝑖𝑘 𝑋𝑘 𝑗 𝑇 0

𝑖 𝑗

𝑖 LS(root)

Rep(root,

⟨𝐴̂𝑖 ⟩)
⟨𝐴̂𝑖 ⟩

𝑘 LS(⟨𝐴̂𝑖 ⟩) LS(⟨𝑋𝑖 ⟩) ⟨𝑇 0

𝑖
⟩

∩𝑘

𝑗
Rep(⟨𝐴̂𝑘 ⟩,

⟨𝑋 𝑗 ⟩)
LS(⟨𝑋𝑘 ⟩)

∑
𝑘

(
⟨𝐴̂val⟩

·⟨𝑋val⟩
)
crd

0

val Val(⟨𝐴̂ 𝑗 ⟩) Val(⟨𝑋 𝑗 ⟩)

∑
𝑘

(
⟨𝐴̂val⟩

·⟨𝑋val⟩
)
val

(b) Partially filled table

𝐴̂𝑖𝑘 𝑋𝑘 𝑗 𝑇 0

𝑖 𝑗

𝑖 LS(root)

Rep(root,

⟨𝐴̂𝑖 ⟩)
⟨𝐴̂𝑖 ⟩

𝑘 LS(⟨𝐴̂𝑖 ⟩) LS(⟨𝑋𝑖 ⟩) ⟨𝑇 0

𝑖
⟩

Intersect𝑘

𝑗
Rep(⟨𝐴̂𝑘 ⟩,

⟨𝑋 𝑗 ⟩)
LS(⟨𝑋𝑘 ⟩)

∑
𝑘

(
⟨𝐴̂val⟩

×⟨𝑋val⟩
)
crd

0

val Val(⟨𝐴̂ 𝑗 ⟩) Val(⟨𝑋 𝑗 ⟩)

∑
𝑘

(
⟨𝐴̂val⟩

×⟨𝑋val⟩
)
val

(c) Fully constructed table

Level Scanner
Ak compressed

Level Scanner
Xk compressed

Level Scanner
Ai compressed Repeater Xi

Repeater Aj Level Scanner
Xj compressed

i crd

Array X valsArray A vals

Intersecter

Multiplier

Vector (1) Reducer k

j crd

j crd

(d) Partial SAMML graph.

Figure 9. Fusion table construction for sparse matrix multiplication ∀𝑖𝑘 𝑗 𝑇 0

𝑖 𝑗 = 𝐴𝑖𝑘𝑋𝑘 𝑗 : (a) an empty fusion table; (b) a partially

filled table as the compiler walks the expression DAG—highlighting how it can reference cells (nodes) not yet materialized; (c)

the fully populated fusion table; (d) the generated dataflow graph generated from the completed table. Colors in the table

visually indicate how cell components map to nodes in Figure 9d. Shaded column mark which column FuseFlow has processed.

Level Writer
Ti

compressed

root Level Scanner
Al

compressed

Level Scanner
Ai

compressed

root
Level Scanner

Xl
dense

Repeater
Xi

In
te

rs
ec

te
r Repeater

Am

Level Scanner
Xm

dense

Array
A vals

Array
X vals

Level Writer
T vals

compressed

i crd

m crd Level Writer
Tj

compressed

Ve
ct

or
 (1

) R
ed

uc
er

 m

i crd Coordinate
Dropper

Repeater
Ωi

Level
Scanner Ωm
compressed

In
te

rs
ec

te
r

Level Scanner
Ωj

compressed
Array
Ω vals

M
ult

ip
lie

r

root

Repeater
Xj

j crd
l crd

j crd
m crd

M
ult

ip
lie

r

Ve
ct

or
 (1

) R
ed

uc
er

 l

m crd
l crd

Input Iteration: T0 Computation: T0

Input Iteration: T1 Computation: T1

Tensor Construction

Figure 10. SAMML graph for the neighborhood subcomputation 𝑇𝑛𝑏𝑜𝑟
𝑖 𝑗 = Â𝑖𝑙𝑋𝑙𝑚Ω(2)

𝑚𝑗
from GraphSAGE with 𝑖 → 𝑙 →𝑚 → 𝑗

order. See Figure 20 in Section B.2 for the full fusion table that generates this graph.

Input Iteration: T0

Input Iteration: T1Computation: T0

Computation: T1

Input Iteration:
T0 fused with T1

Computation:
T0 fused with T1

Factored Fusion LoweringFully Fused Lowering

Tensor Construction Tensor Construction

Figure 11. How fully fused input iteration (Figure 5a) vs.

factored input iteration (Figure 5b) manifests spatially in

sparse dataflow graphs. Factored fusion splits the iteration

sub-graphs (two blue regions), while fully-fused iteration

keeps the iteration sub-graph intact (one blue region).

into newly created merged cells, effectively rewiring the

graph before code generation. In Figure 9c, FuseFlow merges

cells for 𝐴𝑘 and 𝑋 𝑗 into an intersect (shown in purple). If

output coordinates coming from a higher-order reducer need

merging, the corresponding reduction node’s cell is moved

instead. This step shows how the compiler modifies the input

iteration pipeline through simple cell movement.

Why fusion tables? Conventional compiler representa-

tions, such as dependency graphs or value-numbering ap-

proaches, represent computations as fixed nodes and edges

[32]. However, these approaches lack flexibility: once nodes

are instantiated, it becomes challenging to reorder or restruc-

ture them dynamically without cumbersome graph trans-

formations. In contrast, the fusion table is designed to be a

malleable blueprint that the compiler can adjust before final

code generation. This brings two key benefits:

1) Deferred graph construction for flexibility: As de-
scribed previously, fusion tables defer node creation and

memoize intermediate streams, allowing for references be-

fore creation. This feature lets the compiler rewire node

connections without complex graph manipulation.

2) Explicit grid layout: Rows encode fused iteration

(control) and columns encode tensor views (data), with cells

as operations or references. This grid makes dependencies

and reuse obvious, simplifying fused graph generation and

mapping cleanly to sparse dataflow hardware.

6.2 Code Generation
FuseFlow generates the final dataflow graph by traversing

the fusion table top-down, instantiating nodes for coordinate

iteration and computation as dictated by the table structure.

Starting from the output tensor value cell, FuseFlow recur-

sively expands dependent cells upward, constructing the

ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA. Rubens Lacouture et al.

graph nodes and streams that correspond to the fused loops.

Finally, tensor construction nodes (level writers, coordinate

droppers) are added to finalize outputs. Figure 10 shows the

final dataflow graph generated for a fused GraphSAGE ker-

nel (see Section B.2 for its corresponding fusion table). The

result is a hardware-efficient dataflow graph in the factored-

iteration style. By design, our fusion table lowering yields

a factored (not global) iteration space, interleaving input

iteration and computation, as motivated in Section 3 and

illustrated in Figure 11 on the right. A direct comparison of

the SAM graph with global iteration space and the SAMML

graph with factored iteration space is shown in Section B.3.

These lowering algorithm implications are further discussed

in Section B.3. The full lowering algorithm can be found in

Section B.5. Lowering FuseFlow’s generated SAMML graph

to real hardware follows prior work [42], as each node lends

itself to VLSI implementations. Therefore, SAMML graphs

compose to represent sparse DL on dataflow accelerators.

7 FuseFlow Implementation
We implement FuseFlow within the MLIR compiler frame-

work. We reimplement SAM as an MLIR dialect with a new

FuseFlow MLIR compilation path as described in Section 4.

FuseFlow compiles these dialects to SAM graphs and lets

users control fusion and dataflow ordering through a sched-

uling language as shown in Figure 7. FuseFlow also includes

additional optimizations, which were discussed in the con-

text of the SAM IR but not previously present in any SAM

compiler [32]. These optimizations—such as parallelization,

sparsity blocking, dataflow ordering, and an analytical fu-

sion heuristic—are necessary for efficient, large-scale ML.

Users can guide these optimizations through a command-

line scheduling interface.

For lower-level compilation to hardware, we leverage es-

tablished infrastructure from prior work as shown in Figure 7.

This stack handles hardware constraints, signal elaboration,

memory allocation, CGRA mapping, and pipelining with

place-and-route. Following modern compiler design princi-

ples like MLIR, separating high-level transformations from

backend-specific lowering enables portability across differ-

ent dataflow backends (simulator, FPGA, CGRA).

Parallelization. Our compiler applies vectorization and

loop unrolling optimizations inspired by SAM [32], concretiz-

ing them via stream parallelizer and serializer primitives.

Users specify parallelization by selecting index variables and

parallelization factors. The compiler partitions tensor coordi-

nates and duplicates compute subgraphs, distributing work

across parallel streams and merging results upon completion.

Sparsity Blocking. FuseFlow efficiently targets structured

sparsity (e.g., block-sparsity [14, 79]) by mapping dense

blocks onto the innermost coordinates of tensors. Sparse

iteration occurs at outer levels, with dense blocks streamed

Model Dataset MxN Sparsity % Sparsity Source

GCN/GraphSAGE Cora [76] 2708x1433 99.7% ZB lossless (in)

GCN/GraphSAGE Cora_ML [7] 2995x2879 99.8% ZB lossless (in)

GCN/GraphSAGE DBLP [7] 17716x1639 99.6% ZB lossless (in)

GCN/GraphSAGE OGB-Collab [34] 235868x128 99.9% ZB lossless (in)

GCN/GraphSAGE OGB-MAG [34] 1939743x128 99.9% ZB lossless (in)

SAE ImageNet [16] 224x224 50% ZB lossy (wt)

SAE NIH-CXR [69] 1024x1024 50% ZB lossy (wt)

SAE LUNA16 [63] 512x512 50% ZB lossy (wt)

GPT-3 w/ BigBird IMDB [7] – 53.9%-86.5%* ZB lossy (mask)

Table 2. Datasets with sparsity levels and types. ZB = zero-

based, in = input, wt = weight, mask = masked activation.

*Attention mask sparsity.

directly to vectorized ALUs, maintaining sparsity-driven

dataflow benefits while enhancing computational density.

Dataflow Ordering. FuseFlow enumerates valid dataflow

orders that do not break fusion, enabling users or autotuning

frameworks to select schedules to optimize performance [45].

Each dataflow order yields different SAMML graphs and

asymptotic efficiencies.

Fusion Heuristic. Our heuristic rapidly estimates FLOPs

and memory transfers of fused programs without full simu-

lation. Users input tensor dimensions, sparsity percentages,

and intersection rates. The fusion heuristic enables light-

weight analysis to quickly prune suboptimal schedules, sig-

nificantly reducing the optimization search space.

8 Evaluation
To evaluate the techniques presented in this paper, we use

FuseFlow to compile various real-world sparse machine

learning applications to our SAMML IR and simulate their

end-to-end cycle-accurate performance. We showcase our

compiler’s generality by using four different model classes.

We also perform ablation studies on various key features of

FuseFlow in Section 8.3 to Section 8.8. FuseFlow’s general

algorithmic fusion mechanism allows us to explore a vast

space of fusion and dataflow schedules, unlocking speedups

that were previously unattainable with existing frameworks

for sparse DL on dataflow hardware.

8.1 Methodology
Benchmark Applications and Datasets. We evaluate Fuse-

Flow on four sparse machine learning model classes across

different domains: Sparse Autoencoder (SAE) [51] (3 layers),

Graph Convolutional Networks (GCN) [35] (2 layers), Graph-

SAGE [26] (2 layers), and GPT-3 Small (125M parameters)

with BigBird attention [79] (sequence length of 1024). For

SAE, we randomly sampled 5 images. Real world datasets

(spanning 50%-99.9% and comprising lossless and lossy spar-

sity sources) were used for each model as shown in Table 2.

FuseFlow Compiler. FuseFlow is implemented in MLIR

within LLVM 19.1.0, with dependencies including Protobuf

28.1 and OR-Tools 9.10, and compiled using GCC 14.2.0. For

FuseFlow: A Fusion-Centric Compilation Framework for Sparse Deep Learning on Dataflow ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA.

Avg % Error

Model class FLOPs Bytes

GPT-3 (block=16) 1.8 5.7

GCN 2.8 9.6

GraphSAGE 2.6 11.5

Table 3. Average percent er-
ror of FLOPs and memory ac-

cesses on OGB-Collab.

Model Unconstr. Constr.

GCN 2.0 · 108* 6.3 · 107
GraphSAGE 3.9 · 107 1.1 · 103

Table 4. Number of dataflow

orders with and without lo-

cal constraints (*capped, esti-

mated up to ∼1015).

all evaluated benchmarks, we select by default the first valid

topological sort provided by FuseFlow (see Section 5).

Compilation Overhead. All models compile in < 750ms.

Simulator Framework. Our Comal simulator models

the architectural behavior of each IR node and tracks cycles

based on fully pipelined dataflow graphs, as in SAM [32].

It incorporates HBM2 memory simulation via Ramulator

2.0 [48], a cycle-accurate DRAM simulator, and provides in-

strumentation to estimate operations and memory accesses.

Comal uses the DAM simulation framework [81] in Rust

1.87.0 with all simulation functional results verified against

a dense PyTorch implementation.

8.2 Hardware Validation
As in SAM [32], our primary evaluation uses a cycle-accurate

simulator. At the time of writing, no existing accelerator

broadly supported end-to-end sparseML. The closest, Onyx [42],

a coarse-grained reconfigurable array (CGRA) targeting sparse

tensor algebra, is insufficient for sparseML as it lacks support

for nonlinear andmasking operations. Therefore, we validate

simulator fidelity against a post-synthesis RTL simulation of

a Xilinx VU9P (AWS F1) design generated from FuseFlow’s

SAMML. FuseFlow lowers to Comal for simulation and to

Vitis HLS for FPGA, using a minimal, proof-of-concept HLS

library to instantiate streaming operators. We select kernels

that fit entirely in on-chip BRAM to isolate compute, includ-

ing partially fused (one-layer) GCN and GraphSAGE, fully

fused GCN, and BigBird attention. Concretely, GCN (11 ker-

nels) and GraphSAGE (13 kernels) on KarateClub [78] and

GPT-3 (17 kernels) with sequence length 64. For each model,

we normalize kernel cycle counts by the best across both

backends and report trend agreement via 𝑅2
over kernels.

We observe a strong agreement of 𝑅2=0.991 in Figure 13.

Fairly recently, Chen et al. [10] introduced Opal, a follow-

on CGRA to Onyx with sparse ML support and improved

dataflow orderings, which we plan to target as future work.

8.3 Fusion
We use FuseFlow to generate fused graphs for each model

comparing the performance at different fusion levels against

unfused configurations. Accelerating unoptimized code is

rarely useful, making fusion an essential avenue for opti-

mization. We show that it is important to identify the right

fusion granularity to ensure meaningful performance gains.

Fusion Configurations. We evaluate three fusion gran-

ularities: unfused (separate operations), partially fused, and
fully fused. For graph models and SAE, partial fusion groups

operations within each layer while full fusion merges all

layers. For GPT-3, reshape operations act as fusion barriers;

partial fusion groups operations between reshapes within

decoder blocks, while full fusion additionally merges across

decoder boundaries. See Section C in the Appendix for a

visual breakdown of these exact fusion boundaries.

As demonstrated in Figure 12, GPT-3 achieves up to ∼2.7×
improvement with full fusion. GCN and GraphSAGE expe-

rience performance degradation under full fusion due to

increased computational overhead from nested matrix multi-

plications, so partial fusion remains more effective for these

models (up to ∼2.6× for GCN on OGB-collab and ∼3.9× for

GraphSAGE on OGB-mag). SAE achieves 1.94× with full fu-

sion but only ∼1.01× with partial fusion. Full fusion benefits

from removing inter-layer materialization, but partial fusion

offers limited benefit because each layer is dominated by a

large sparse matrix multiplication, so fusing smaller subse-

quent operations provides minimal incremental gain. Models

with similar patterns—large compute kernels followed by

many smaller operations—will exhibit similar behavior.

Analyzing GCN further, partially fusing the first layer sig-

nificantly reduces bytes transferred compared to unfused

versions, improving operational intensity (Figure 14). Fully

fused GCN, while having higher operational intensity, suf-

fers from recomputation, degrading overall performance.

Thus, optimal fusion must carefully balance reduced data

movement against additional computation.

Finally, our heuristic effectively estimates computational

andmemory costs. It correctly predicts optimal fusion config-

urations and enables early pruning of suboptimal strategies

as shown in Table 3, which shows the average percentage

errors for FLOPs and memory accesses on GPT-3 (w/ block

size 16), GCN, and GraphSAGE on OGB-Collab.

8.4 Comparison with Prior Dataflow Compilers
We compare FuseFlow against Custard [32] and Stardust [31]

(C+S), the two prior sparse dataflow compilers for general

sparse tensor algebra. As discussed in Section 3, C+S only

support IIF and require manual rewrites for cross-expression

fusion.We evaluate onGCNwith theOGB-Collab dataset [34]

using identical simulator settings and hardware parameters

across all configurations. The unfused baseline compiles each

kernel independently, materializing all intermediate tensors

to memory. The C+S (rewrite) configuration applies manual

expression rewrites to C+S’s inputs that force fused output

code within the constraints of C+S, only support for sparse

tensor computations). FuseFlow uses our automatic cross-

expression fusion techniques.

ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA. Rubens Lacouture et al.

SAE

ImageNet NIH-CXR LUNA16
Dataset

0

2

4

Sp
ee

du
p

Unfused
Partially Fused
Fully Fused

GCN

cora cora_ml dblp collab mag
Dataset

GraphSAGE

cora cora_ml dblp collab mag
Dataset

GPT-3 w/ BigBird

16 32 64
Block Size

Figure 12. The effect of fusion on dataflow performance across various models.

100 101 102 103

Simulator Latency (normalized)

101

103

F
P

G
A

L
at

en
cy

(n
or

m
al

iz
ed

)

Comal vs. FPGA Correlation (R² = 0.991)

Ideal parity

GCN

GraphSage

GPT-3

Figure 13. Latency correlation of Comal simulation versus

an FPGA across kernels across various models. Colors denote

models; the dashed line shows parity.

As shown in Figure 4b, C+S with handwritten rewrites

achieves 1.97× speedup over the unfused baseline. Fuse-

Flow achieves an additional 1.33× speedup over C+S, yield-

ing 2.63× total speedup. FuseFlow’s gains come from two

sources: (1) automatic cross-expression fusion eliminates in-

termediate materializations that baseline C+S cannot fuse,

and (2) factored iteration during code generation reduces co-

ordinate processing overhead. Importantly, FuseFlow achieves

this with less user effort since no manual expression rewrites

as the input program to the compiler are required.

8.5 Sparsity Ablation Study
To isolate sparsity’s effect on fusion performance, we eval-

uate FuseFlow on 2-layer GCN using synthetic graphs (500

nodes, 128-dimensional features) with adjacency matrix spar-

sity varying from 50% to 95%. We test three graph structures

(sparsity patterns): uniform random, power-law (scale-free

networks), and block diagonal (clustered communities). Fig-

ure 15 shows that partial fusion achieves consistent speedups

that increase with sparsity, as sparser matrices reduce co-

ordinate processing overhead. Structured patterns (power-

law, block diagonal) outperform uniform random due to

better locality. In contrast, full fusion incurs slowdowns

when coordination overhead dominates the reduced com-

putation. These results confirm that optimal fusion granu-

larity depends on both sparsity level and structure. Fuse-

Flow scales with nonzero count rather than dense dimen-

sions, which aligns with studies from prior sparse compil-

ers [29, 32, 37, 38].

8.6 Parallelization
We evaluate FuseFlow’s capacity to enhance performance

by generating parallel dataflow graphs. We first perform a

sweep of parallelization factors from 1 to 64 to parallelize a

single index variable in BigBird attention, as shown in Fig-

ure 16a. We find that FuseFlow’s generated program scales

well with the amount of added parallelism. We also demon-

strate FuseFlow’s ability to parallelize across different index

variables, and its support for nested parallelism. Figure 16b

shows the impact of parallelizing two different index vari-

ables in BigBird attention, highlighting the performance

effects when sweeping across various parallelization factors,

as well as applying a constant factor of 4 across both levels

at the same time. While varying parallelization location, we

find that FuseFlow’s generated programs are able to obtain

performance improvements relative to the parallelization

factor. Parallelizing both levels at the same time by a parallel

factor of 4 results in ∼15.9𝑥 speedup.

8.7 Block Sparse Computation
We evaluate FuseFlow’s sparsity blocking on the BigBird

attention module for all three block configurations. We com-

pare the performance of this blocked approach with our

results in Figure 12, which treats the tensors as unstructured

sparse computation. The results in Figure 17 show that the

speedup obtained is proportional to the block size.

8.8 Dataflow Ordering
We evaluate the impact of dataflow ordering by varying the

order of nested matrix multiplication (matmul)—a core oper-

ation in GCN and GraphSAGE—using KarateClub [78]. As

shown in Figure 18, suboptimal orders cause up to∼29× slow-
down compared to the best. Leveraging the best order thus

provides an end-to-end speedup of ∼29× for fused GCN and

GraphSAGE models. Additionally, constraining each matmul

FuseFlow: A Fusion-Centric Compilation Framework for Sparse Deep Learning on Dataflow ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA.

Higher operational
intensity

Less work

Higher operational
intensity

Less work

Higher operational
intensity

Less work

Figure 14.GCN FLOPs and memory accesses normalized to the unfused baseline across datasets. Dashed lines show operational

intensity. Fusion increases operational intensity, but full fusion’s recomputation increases both FLOPs and memory.

50 60 70 80 90
Sparsity (%)

0.01

0.1

1

10

Sp
ee

du
p

Uniform
Partially fused

Power law
Fully fused

Block diag

Figure 15. Speedup over unfused baseline vs. adjacency

matrix sparsity on a 2-layer GCN with synthetic graphs (500

nodes, 128 features) across three sparsity patterns: uniform

random, power-law, and block diagonal.

1 2 4 8 16 32 64
Parallel Factor

1
2
4
8

16
32
64

S
p

ee
d

u
p

(a) Par factor sweep

1 2 All
Parallelized Level

0

10

N
or

m
al

iz
ed

C
yc

le
s

Par Factor

1

2

4

(b) Par location sweep

Figure 16. The effect of parallelization factor and paralleliza-

tion location for BigBird attention.

kernel to the best dataflow order significantly reduces the

design-space size by 68.5%-99.9%, as shown in Table 4. With-

out these constraints, GCN alone has an impractically large

number of possible dataflows (estimated up to ∼1015), so we

limit the search space to 2 × 108 configurations in FuseFlow.

9 Related Work
This paper shows how to compile sparse ML models to a

sparse dataflow abstract machine. We review related work

on sparse compilation to dataflow hardware, fusion in sparse

tensor algebra frameworks, and sparse ML systems.

16 32 64
Block Size

102

105

S
p

ee
d

u
p

Unstructured

Blocked

Figure 17. Performance

of block sparse computa-

tion for BigBird attention.

ik
jl

ik
lj

ij
kl

ij
lk

ilk
j

ilj
k

ji
kl

ji
lk

jk
il

jl
ik

jl
ki

lik
j

lij
k

lj
ik

lj
ki

Dataflow Order

0

20

S
p

ee
d

u
p

Figure 18. Dataflow order sweep

for nested matmul normalized by

worst dataflow.

9.1 Compiling Sparse Tensor Algebra to Dataflow
Several techniques have been proposed for compiling sparse

tensor algebra to dataflow hardware. Closest to our work is

the Custard compiler [32]. Custard compiles sparse tensor

algebra expressions to SAM graphs with intra-layer iteration

fusion (IIF). Moreover, the compiler for the Onyx chip [42]

maps SAM graphs to physical sparse CGRA hardware. The

SAMML dataflow graphs we target are an extension of SAM

graphs with additional ML primitives. Unlike Custard, our

work supports a different form of IIF through factored itera-

tion and introduces cross-expression fusion (EKF).

An extension to the Spatial compiler [39, 60] for Capstan

hardware [57, 60] compiles computations written in paral-

lel patterns—a loop-based declarative language—to sparse

dataflow hardware. Moreover, the Stardust [31] compiler can

compile high-level sparse tensor algebra languages to these

parallel patterns. Stardust, like Custard, only supports tensor

expressions and cannot compile entire sparse ML models or

provide cross-expression fusion.

Finally, there is a class of work on compiling general-

purpose C code to reconfigurable dataflow accelerators.Weng

et al. [71] describe a compiler from annotated sparse loops

to their SPU hardware [13], and Gobieski et al. [23] presents

a co-designed compiler from general code to a CGRA. Both

works support sparse loops in their general-purpose input

code but do not compile from higher-level sparse languages.

ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA. Rubens Lacouture et al.

9.2 Fusion in Sparse Tensor Frameworks
The TACO compiler [37] showed how to generate fused loops

for sparse tensor algebra expressions on CPUs and GPUs [62].

Later sparse tensor algebra compilers have expanded such

fusion capabilities [82] to expressions over additional data

structures [1, 12, 46, 77] and operations [29, 43, 59, 66]. The

fusion support in these compilers, however, is limited to

tensor algebra expressions and CPU/GPU compilation [74].

Other frameworks such as FusedMM [58] and SeaStar [72]

support sparse operator fusion but are limited to specific

patterns (e.g., SDDMM+SpMM operations or GNN message-

passing patterns). Zhou et al. [82] introduce techniques that

identify and avoid four common redundancy types in IIF

for sparse tensor algebra. Their compiler, ReACT, is most

similar to ours as it introduces a representation close to

our fused Einsums to and generates factored iteration code.

SparseLNR [17] extends TACO with selective fusion/distri-

bution to balance complexity and locality. Both compilers

generate factored iteration code similar to ours, but they

cannot fuse multiple independent expressions or generate

dataflow code. Building upon these works, we show how to

fuse across independent Einsum expressions in an ML model

and how to do so when compiling to dataflow machines.

The TeAAL framework [50] presents a declarative lan-

guage of cascaded Einsums to describe sparse tensor alge-

bra accelerators and generates an accelerator simulator and

performance model from that language. TeAAL represents

multiple Einsum expressions similar to our work, but our

work generates fused code across those Einsum expressions.

While TeAAL is a tool for modeling dataflow accelerators,

FuseFlow generates a program configuration or mapping to

dataflow accelerators through the SAMML IR along with a

simulation of that program.

9.3 Relation to Classic Loop Optimizations
FuseFlow’s iteration-space transformations are the sparse

dataflow analogues of classical loop optimizations studied

extensively in prior compilers with sparse-loop optimiza-

tions [5, 6, 38, 67] and the polyhedral compilation litera-

ture [8, 18, 65]. Our intra-expression iteration fusion (IIF)

corresponds to loop fusion, while dataflow order selection

corresponds to loop interchange. However, unlike traditional

polyhedral compilation that operates on dense affine itera-

tion spaces, FuseFlow fuses sparse tensor algebra operations

whose iteration spaces can be thought of as polyhedra with

holes [37]. In dataflow, we operate on compressed-coordinate

streams with strict ordering constraints; these streams can be

viewed as a linearization of the sparse iteration space [32, 43].

Our POG encodes constraints on the loop-ordering schedul-

ing space, analogous to dependence polyhedra, while fusion

tables—similar to certain fusion information contained in

schedule trees—reshape streaming dataflow primitives into

a fixed iteration policy that aligns with the POG rather than

rearranging imperative loop nests.

9.4 Sparse ML Compilation and Frameworks
A few ML frameworks have been designed with support for

sparse tensors and, hence, sparse ML models. Scorch [75]

describes several techniques needed to implement a version

of the PyTorch API that supports sparse as well as dense ten-

sors. The MLIR Linalg + SparseTensor dialects [5] combined

with the MLIR lowering from PyTorch to Linalg [24] also

provides a sparse ML framework for CPUs. Our compilation

techniques complement these frameworks with a compi-

lation path to sparse dataflow hardware. Domain-specific

libraries like PyTorch Geometric (PyG) [19] and Deep Graph

Library (DGL) [68] integrate sparse computation into spe-

cific applications, but they lack the generality needed for

targeting a broader range of sparse models.

10 Conclusion
FuseFlow introduces key pieces in compiling large-scale

sparse ML models expressed in PyTorch to dataflow architec-

tures. We believe such frameworks are essential for making

productive use of these architectures. Our work opens up

several avenues of future compiler work to develop further

optimizations on sparse dataflow and to map from SAMML

to physical RDA hardware.

Acknowledgments
Wewould like to thank James Dong, Benjamin Driscoll, Chris

Gyurgyik, Konstantin Hossfeld, Jungwoo Kim, Scott Kovach,

Devanshu Ladsaria, Sai Gautham Ravipati, AJ Root, Alex

Rucker, Nathan Sobotka, Gina Sohn, Bala Vinaithirthan, Ro-

han Yadav, Bobby Yan, Genghan Zhang, and Qizheng Zhang

for their feedback on this paper. We would also like to thank

Bo Wun Cheng and Zhouhua Xie for help on technical ideas.

We would especially like to thank Shiv Sundram and Mark

Horowitz for their feedback on both the work and the paper.

This work was supported in part by the National Science

Foundation under grant number 2216964, DARPA under the

Machine learning and Optimization-guided Compilers for

Heterogeneous Architectures (MOCHA) program (award

number HR00112520038), and by the Naval Surface Warfare

Center under Agreement No. N00164-23-9-G057-01. This

research was also supported in part by the Stanford Data

Analytics forWhat’s Next (DAWN) Affiliate Program and the

PRISM center, one of seven centers in JUMP 2.0, a Semicon-

ductor Research Corporation (SRC) program sponsored by

DARPA. Olivia Hsu was supported in part by an NSF GRFP.

Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the authors and

do not necessarily reflect the views of the aforementioned

funding agencies.

FuseFlow: A Fusion-Centric Compilation Framework for Sparse Deep Learning on Dataflow ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA.

References
[1] Willow Ahrens, Daniel Donenfeld, Fredrik Kjolstad, and Saman Ama-

rasinghe. 2023. Looplets: A Language for Structured Coiteration. In

Proceedings of the 21st ACM/IEEE International Symposium on Code
Generation and Optimization (Montréal, QC, Canada) (CGO ’23). As-
sociation for Computing Machinery, New York, NY, USA, 41–54.

doi:10.1145/3579990.3580020
[2] Willow Ahrens, Fredrik Kjolstad, and Saman Amarasinghe. 2022. Au-

toscheduling for sparse tensor algebra with an asymptotic cost model.

In Proceedings of the 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (San Diego, CA,

USA) (PLDI 2022). Association for Computing Machinery, New York,

NY, USA, 269–285. doi:10.1145/3519939.3523442
[3] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh

Jain, Michael Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni

Burovski, Geeta Chauhan, Anjali Chourdia, Will Constable, Alban

Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong,

Michael Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalam-

barkar, Laurent Kirsch, Michael Lazos, Mario Lezcano, Yanbo Liang,

Jason Liang, Yinghai Lu, C. K. Luk, Bert Maher, Yunjie Pan, Christian

Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen

Suk, Shunting Zhang, Michael Suo, Phil Tillet, Xu Zhao, Eikan Wang,

Keren Zhou, Richard Zou, Xiaodong Wang, Ajit Mathews, William

Wen, Gregory Chanan, Peng Wu, and Soumith Chintala. 2024. Py-

Torch 2: Faster Machine Learning Through Dynamic Python Bytecode

Transformation and Graph Compilation. In Proceedings of the 29th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 2 (La Jolla, CA, USA)
(ASPLOS ’24). Association for Computing Machinery, New York, NY,

USA, 929–947. doi:10.1145/3620665.3640366
[4] Manya Bansal, Olivia Hsu, Kunle Olukotun, and Fredrik Kjolstad. 2023.

Mosaic: An Interoperable Compiler for Tensor Algebra. Proc. ACM
Program. Lang. 7, PLDI, Article 122 (June 2023), 26 pages. doi:10.1145/
3591236

[5] Aart Bik, Penporn Koanantakool, Tatiana Shpeisman, Nicolas Vasi-

lache, Bixia Zheng, and Fredrik Kjolstad. 2022. Compiler Support for

Sparse Tensor Computations in MLIR. ACM Trans. Archit. Code Optim.
19, 4, Article 50 (Sept. 2022), 25 pages. doi:10.1145/3544559

[6] Aart J. C. Bik and Harry A. G. Wijshoff. 1993. Compilation Tech-

niques for Sparse Matrix Computations. In International Conference on
Supercomputing. ACM, 416–424. doi:10.1145/165939.166023

[7] Aleksandar Bojchevski and Stephan Günnemann. 2018. Deep Gaussian

Embedding of Graphs: Unsupervised Inductive Learning via Ranking.

arXiv:1707.03815 [stat.ML] https://arxiv.org/abs/1707.03815
[8] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayap-

pan. 2008. A practical automatic polyhedral parallelizer and locality

optimizer. In Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). 101–113.

[9] Alex Carsello, Kathleen Feng, Taeyoung Kong, Kalhan Koul, Qiaoyi

Liu, Jackson Melchert, Gedeon Nyengele, Maxwell Strange, Keyi

Zhang, Ankita Nayak, Jeff Setter, James Thomas, Kavya Sreedhar,

Po-Han Chen, Nikhil Bhagdikar, Zachary Myers, Brandon D’Agostino,

Pranil Joshi, Stephen Richardson, Rick Bahr, Christopher Torng, Mark

Horowitz, and Priyanka Raina. 2022. Amber: A 367 GOPS, 538 GOPS/W

16nm SoC with a Coarse-Grained Reconfigurable Array for Flexible

Acceleration of Dense Linear Algebra. IEEE Symposium on VLSI Tech-

nology & Circuits.

[10] Po-Han Chen, Bo Wun Cheng, Michael Oduoza, Zhouhua Xie, Rupert

Lu, Sai Gautham Ravipati, Kalhan Koul, Alex Carsello, Yuchen Mei,

Mark Horowitz, and Priyanka Raina. 2025. Opal: A 16-nm Coarse-

Grained Reconfigurable Array SoC for Full Sparse Machine Learning

Applications. IEEE Solid-State Circuits Letters 8 (2025), 293–296. doi:10.
1109/LSSC.2025.3613245

[11] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie

Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis

Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An

Automated End-to-End Optimizing Compiler for Deep Learning. In

13th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 18). USENIX Association, Carlsbad, CA, 578–594.

https://www.usenix.org/conference/osdi18/presentation/chen
[12] Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2018. For-

mat Abstraction for Sparse Tensor Algebra Compilers. Proc. ACM
Program. Lang. 2, OOPSLA, Article 123 (October 2018), 30 pages.

[13] Vidushi Dadu, Jian Weng, Sihao Liu, and Tony Nowatzki. 2019. To-

wards General Purpose Acceleration by Exploiting Common Data-

Dependence Forms. In Proceedings of the 52nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (Columbus, OH, USA)

(MICRO ’52). Association for Computing Machinery, New York, NY,

USA, 924–939. doi:10.1145/3352460.3358276
[14] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré.

2022. Flashattention: Fast and memory-efficient exact attention with

io-awareness. Advances in Neural Information Processing Systems 35
(2022), 16344–16359.

[15] N.G de Bruijn. 1972. Lambda calculus notation with nameless dummies,

a tool for automatic formula manipulation, with application to the

Church-Rosser theorem. Indagationes Mathematicae (Proceedings) 75,
5 (1972), 381–392. doi:10.1016/1385-7258(72)90034-0

[16] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

2009. ImageNet: A large-scale hierarchical image database. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition
(CVPR). 248–255.

[17] Adhitha Dias, Kirshanthan Sundararajah, Charitha Saumya, andMilind

Kulkarni. 2022. SparseLNR: accelerating sparse tensor computations

using loop nest restructuring. In Proceedings of the 36th ACM Interna-
tional Conference on Supercomputing. 1–14.

[18] Paul Feautrier. 1991. Dataflow analysis of array and scalar references.

International Journal of Parallel Programming 20, 1 (1991), 23–53.

[19] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation

Learning with PyTorch Geometric. In ICLRWorkshop on Representation
Learning on Graphs and Manifolds.

[20] Amin Firoozshahian, Joel Coburn, Roman Levenstein, Rakesh Nat-

toji, Ashwin Kamath, Olivia Wu, Gurdeepak Grewal, Harish Aepala,

Bhasker Jakka, Bob Dreyer, et al. 2023. Mtia: First generation silicon

targeting meta’s recommendation systems. In Proceedings of the 50th
Annual International Symposium on Computer Architecture. 1–13.

[21] Trevor Gale, Erich Elsen, and Sara Hooker. 2019. The state of sparsity

in deep neural networks. arXiv preprint arXiv:1902.09574 (2019).
[22] Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. 2020. Sparse

GPU Kernels for Deep Learning. IEEE Press, Chapter 17, 1–14.

[23] Graham Gobieski, Souradip Ghosh, Marijn Heule, Todd Mowry, Tony

Nowatzki, Nathan Beckmann, and Brandon Lucia. 2023. RipTide: A

Programmable, Energy-Minimal Dataflow Compiler and Architecture.

In Proceedings of the 55th Annual IEEE/ACM International Symposium
on Microarchitecture (Chicago, Illinois, USA) (MICRO ’22). IEEE Press,

546–564. doi:10.1109/MICRO56248.2022.00046
[24] Google. 2021. MLIR Sparsifier. https://developers.google.com/mlir-

sparsifier
[25] Fred G. Gustavson. 1978. Two Fast Algorithms for Sparse Matrices:

Multiplication and Permuted Transposition. ACM Trans. Math. Softw.
4, 3 (1978).

[26] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive

Representation Learning on Large Graphs. In Proceedings of the 31st In-
ternational Conference on Neural Information Processing Systems (Long
Beach, California, USA) (NIPS’17). Curran Associates Inc., Red Hook,

NY, USA, 1025–1035.

[27] Song Han, Jeff Pool, John Tran, and William J. Dally. 2015. Learn-

ing both Weights and Connections for Efficient Neural Networks.

https://doi.org/10.1145/3579990.3580020
https://doi.org/10.1145/3519939.3523442
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3591236
https://doi.org/10.1145/3591236
https://doi.org/10.1145/3544559
https://doi.org/10.1145/165939.166023
https://arxiv.org/abs/1707.03815
https://arxiv.org/abs/1707.03815
https://doi.org/10.1109/LSSC.2025.3613245
https://doi.org/10.1109/LSSC.2025.3613245
https://www.usenix.org/conference/osdi18/presentation/chen
https://doi.org/10.1145/3352460.3358276
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1109/MICRO56248.2022.00046
https://developers.google.com/mlir-sparsifier
https://developers.google.com/mlir-sparsifier

ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA. Rubens Lacouture et al.

arXiv:1506.02626 [cs.NE] https://arxiv.org/abs/1506.02626
[28] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal

Crago, Aamer Jaleel, Edgar Solomonik, Joel Emer, and Christopher W

Fletcher. 2019. ExTensor: An accelerator for sparse tensor algebra. In

Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture. 319–333.

[29] RawnHenry, Olivia Hsu, Rohan Yadav, Stephen Chou, Kunle Olukotun,

SamanAmarasinghe, and Fredrik Kjolstad. 2021. Compilation of Sparse

Array Programming Models. Proc. ACM Program. Lang. 5, OOPSLA,
Article 128 (October 2021), 29 pages. doi:10.1145/3485505

[30] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and

Alexandra Peste. 2021. Sparsity in deep learning: Pruning and growth

for efficient inference and training in neural networks. Journal of
Machine Learning Research 22, 241 (2021), 1–124.

[31] Olivia Hsu, Alexander Rucker, Tian Zhao, Varun Desai, Kunle Oluko-

tun, and Fredrik Kjolstad. 2025. Stardust: Compiling Sparse Tensor Al-

gebra to a Reconfigurable Dataflow Architecture. In Proceedings of the
23rd ACM/IEEE International Symposium on Code Generation and Opti-
mization (Las Vegas, NV, USA) (CGO ’25). Association for Computing

Machinery, New York, NY, USA, 628–643. doi:10.1145/3696443.3708918
[32] Olivia Hsu, Maxwell Strange, Ritvik Sharma, Jaeyeon Won, Kunle

Olukotun, Joel S Emer, Mark A Horowitz, and Fredrik Kjølstad. 2023.

The sparse abstract machine. In Proceedings of the 28th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3. 710–726.

[33] Olivia Weiya Hsu. 2025. Programming Systems for Sparse Accelerators.
Ph. D. Dissertation. Stanford University.

[34] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren,

Bowen Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph

Benchmark: Datasets for Machine Learning on Graphs. arXiv preprint
arXiv:2005.00687 (2020).

[35] Thomas N. Kipf andMaxWelling. 2017. Semi-Supervised Classification

with Graph Convolutional Networks. In International Conference on
Learning Representations. https://openreview.net/forum?id=SJU4ayYgl

[36] Fredrik Kjolstad, Peter Ahrens, Shoaib Kamil, and Saman Amarasinghe.

2019. Tensor Algebra Compilation with Workspaces. International
Symposium on Code Generation and Optimization (February 2019).

[37] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and

Saman Amarasinghe. 2017. The tensor algebra compiler. Proceedings
of the ACM on Programming Languages 1, OOPSLA (2017), 1–29.

[38] Fredrik Berg Kjølstad. 2020. Sparse tensor algebra compilation. Ph. D.
Dissertation. Massachusetts Institute of Technology.

[39] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang,

Stefan Hadjis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pe-

dram, Christos Kozyrakis, and Kunle Olukotun. 2018. Spatial: A Lan-

guage and Compiler for Application Accelerators. In Proceedings of
the 39th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (Philadelphia, PA, USA) (PLDI 2018). As-
sociation for Computing Machinery, New York, NY, USA, 296–311.

doi:10.1145/3192366.3192379
[40] Kalhan Koul, Olivia Hsu, Yuchen Mei, Sai Gautham Ravipati, Maxwell

Strange, Jackson Melchert, Alex Carsello, Taeyoung Kong, Po-Han

Chen, Huifeng Ke, Keyi Zhang, Qiaoyi Liu, Gedeon Nyengele, Zhouhua

Xie, Akhilesh Balasingam, Jayashree Adivarahan, Ritvik Sharma,

Christopher Torng, Joel S. Emer, Fredrik Kjolstad, Mark Horowitz,

and Priyanka Raina. 2025. Onyx: A 12-nm Programmable Accelerator

for Dense and Sparse Applications. IEEE Journal of Solid-State Circuits
(2025), 1–13. doi:10.1109/JSSC.2025.3604724

[41] Kalhan Koul, Jackson Melchert, Kavya Sreedhar, Leonard Truong,

Gedeon Nyengele, Keyi Zhang, Qiaoyi Liu, Jeff Setter, Po-Han Chen,

Yuchen Mei, Maxwell Strange, Ross Daly, Caleb Donovick, Alex

Carsello, Taeyoung Kong, Kathleen Feng, Dillon Huff, Ankita Nayak,

Rajsekhar Setaluri, James Thomas, Nikhil Bhagdikar, David Durst,

Zachary Myers, Nestan Tsiskaridze, Stephen Richardson, Rick Bahr,

Kayvon Fatahalian, Pat Hanrahan, Clark Barrett, Mark Horowitz,

Christopher Torng, Fredrik Kjolstad, and Priyanka Raina. 2023. AHA:

An Agile Approach to the Design of Coarse-Grained Reconfigurable

Accelerators and Compilers. ACM Trans. Embed. Comput. Syst. 22, 2,
Article 35 (Jan. 2023), 34 pages. doi:10.1145/3534933

[42] Kalhan Koul, Maxwell Strange, Jackson Melchert, Alex Carsello,

Yuchen Mei, Olivia Hsu, Taeyoung Kong, Po-Han Chen, Huifeng

Ke, Keyi Zhang, Qiaoyi Liu, Gedeon Nyengele, Akhilesh Balasingam,

Jayashree Adivarahan, Ritvik Sharma, Zhouhua Xie, Christopher

Torng, Joel Emer, Fredrik Kjolstad, Mark Horowitz, and Priyanka Raina.

2024. Onyx: A 12nm 756 GOPS/W Coarse-Grained Reconfigurable Ar-

ray for Accelerating Dense and Sparse Applications. IEEE Symposium
on VLSI Technology and Circuits (VLSI) (June 2024).

[43] Scott Kovach, Praneeth Kolichala, Tiancheng Gu, and Fredrik Kjolstad.

2023. Indexed Streams: A Formal Intermediate Representation for

Fused Contraction Programs. Proc. ACM Program. Lang. 7, PLDI,
Article 154 (June 2023), 25 pages. doi:10.1145/3591268

[44] Rubens Lacouture, Olivia Hsu, Kunle Olukotun, and Fredrik Kjolstad.

[n. d.]. Challenges with Hardware-Software Co-design for Sparse

Machine Learning on Streaming Dataflow. ([n. d.]).

[45] Rubens Lacouture, Genghan Zhang, Konstantin Hossfeld, Tian Zhao,

and Kunle Olukotun. 2025. LLM-Guided Autoscheduling for Large-

Scale Sparse Machine Learning. In NeurIPS 2025 Workshop on Machine
Learning for Systems (ML for Systems). https://openreview.net/forum?
id=7H9qWe8lLO

[46] Jie Liu, Zhongyuan Zhao, Zijian Ding, Benjamin Brock, Hongbo Rong,

and Zhiru Zhang. 2024. UniSparse: An Intermediate Language for

General Sparse Format Customization. Proc. ACM Program. Lang. 8,
OOPSLA1, Article 99 (April 2024), 29 pages. doi:10.1145/3649816

[47] LLVM. [n. d.]. Torch-MLIR. https://github.com/llvm/torch-mlir
[48] Haocong Luo, Yahya Can Tuğrul, F. Nisa Bostancı, Ataberk Olgun,

A. Giray Yağlıkçı, , and Onur Mutlu. 2023. Ramulator 2.0: A Modern,

Modular, and Extensible DRAM Simulator.

[49] Jackson Melchert, Yuchen Mei, Kalhan Koul, Qiaoyi Liu, Mark

Horowitz, and Priyanka Raina. 2024. Cascade: An Application Pipelin-

ing Toolkit for Coarse-Grained Reconfigurable Arrays. Trans. Comp.-
Aided Des. Integ. Cir. Sys. 43, 10 (Oct. 2024), 3055–3067. doi:10.1109/
TCAD.2024.3390542

[50] Nandeeka Nayak, Toluwanimi O Odemuyiwa, Shubham Ugare,

Christopher Fletcher, Michael Pellauer, and Joel Emer. 2023. Teaal:

A declarative framework for modeling sparse tensor accelerators. In

Proceedings of the 56th Annual IEEE/ACM International Symposium on
Microarchitecture. 1255–1270.

[51] Andrew Ng et al. 2011. Sparse autoencoder. CS294A Lecture notes 72,
2011 (2011), 1–19.

[52] Quan M. Nguyen and Daniel Sanchez. 2021. Fifer: Practical Acceler-

ation of Irregular Applications on Reconfigurable Architectures. In

MICRO-54: 54th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (Virtual Event, Greece) (MICRO ’21). Association for

Computing Machinery, New York, NY, USA, 1064–1077. doi:10.1145/
3466752.3480048

[53] Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, and Bin Ren.

2021. Dnnfusion: accelerating deep neural networks execution with

advanced operator fusion. In Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Imple-
mentation. 883–898.

[54] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan

Sankaralingam. 2017. Stream-dataflow acceleration. In 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA).
416–429. doi:10.1145/3079856.3080255

[55] NVIDIA. [n. d.]. TensorRT. https://github.com/NVIDIA/TensorRT
[56] Angshuman Parashar, Michael Pellauer, Michael Adler, Bushra Ah-

san, Neal Crago, Daniel Lustig, Vladimir Pavlov, Antonia Zhai, Mohit

Gambhir, Aamer Jaleel, Randy Allmon, Rachid Rayess, StephenMaresh,

https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02626
https://doi.org/10.1145/3485505
https://doi.org/10.1145/3696443.3708918
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1145/3192366.3192379
https://doi.org/10.1109/JSSC.2025.3604724
https://doi.org/10.1145/3534933
https://doi.org/10.1145/3591268
https://openreview.net/forum?id=7H9qWe8lLO
https://openreview.net/forum?id=7H9qWe8lLO
https://doi.org/10.1145/3649816
https://github.com/llvm/torch-mlir
https://doi.org/10.1109/TCAD.2024.3390542
https://doi.org/10.1109/TCAD.2024.3390542
https://doi.org/10.1145/3466752.3480048
https://doi.org/10.1145/3466752.3480048
https://doi.org/10.1145/3079856.3080255
https://github.com/NVIDIA/TensorRT

FuseFlow: A Fusion-Centric Compilation Framework for Sparse Deep Learning on Dataflow ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA.

and Joel Emer. 2013. Triggered Instructions: A Control Paradigm for

Spatially-Programmed Architectures. In Proceedings of the 40th Annual
International Symposium on Computer Architecture (Tel-Aviv, Israel)
(ISCA ’13). Association for Computing Machinery, New York, NY, USA,

142–153. doi:10.1145/2485922.2485935
[57] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian

Zhao, Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle

Olukotun. 2017. Plasticine: A Reconfigurable Architecture For Parallel

Paterns. SIGARCH Comput. Archit. News 45, 2 (June 2017), 389–402.
doi:10.1145/3140659.3080256

[58] Md Khaledur Rahman, Majedul Haque Sujon, and Ariful Azad. 2021.

Fusedmm: A unified sddmm-spmm kernel for graph embedding and

graph neural networks. In 2021 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS). IEEE, 256–266.

[59] Alexander J Root, Bobby Yan, Peiming Liu, Christophe Gyurgyik,

Aart J.C. Bik, and Fredrik Kjolstad. 2024. Compilation of Shape Opera-

tors on Sparse Arrays. Proc. ACM Program. Lang. 8, OOPSLA2, Article
312 (Oct. 2024), 27 pages. doi:10.1145/3689752

[60] Alexander Rucker, Matthew Vilim, Tian Zhao, Yaqi Zhang, Raghu

Prabhakar, and Kunle Olukotun. 2021. Capstan: A Vector RDA for

Sparsity. InMICRO-54: 54th Annual IEEE/ACM International Symposium
on Microarchitecture (Virtual Event, Greece) (MICRO ’21). Association
for Computing Machinery, New York, NY, USA, 1022–1035. doi:10.
1145/3466752.3480047

[61] Amit Sabne. 2020. XLA : Compiling Machine Learning for Peak Per-

formance.

[62] Ryan Senanayake, Changwan Hong, Ziheng Wang, Amalee Wilson,

Stephen Chou, Shoaib Kamil, Saman Amarasinghe, and Fredrik Kjol-

stad. 2020. A Sparse Iteration Space Transformation Framework for

Sparse Tensor Algebra. Proc. ACM Program. Lang. 4, OOPSLA, Article
158 (Nov. 2020), 30 pages. doi:10.1145/3428226

[63] Arnaud Arindra Adiyoso Setio, Alberto Traverso, Thomas de Bel,

Moira SN Berens, Cas van den Bogaard, Piergiorgio Cerello, Hao Chen,

Qi Dou, Maria Evelina Fantacci, Bram Geurts, et al. 2017. Validation,

comparison, and combination of algorithms for automatic detection

of pulmonary nodules in computed tomography images: The LUNA16

challenge. Medical image analysis 42 (2017), 1–13.
[64] Marco Siracusa, Víctor Soria-Pardos, Francesco Sgherzi, Joshua Ran-

dall, Douglas J Joseph, Miquel Moretó Planas, and Adrià Armejach.

2023. A tensor marshaling unit for sparse tensor algebra on general-

purpose processors. In Proceedings of the 56th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture. 1332–1346.

[65] Michelle Mills Strout, Alan LaMielle, Larry Carter, Jeanne Ferrante,

Barbara Kreaseck, and Catherine Olschanowsky. 2016. An Approach

for Code Generation in the Sparse Polyhedral Framework. Parallel
Comput. 53 (April 2016), 32–57.

[66] Shiv Sundram, Muhammad Usman Tariq, and Fredrik Kjolstad. 2024.

Compiling Recurrences over Dense and Sparse Arrays. Proc. ACM
Program. Lang. 8, OOPSLA1, Article 103 (April 2024), 26 pages. doi:10.
1145/3649820

[67] Anand Venkat, Mary Hall, and Michelle Strout. 2015. Loop and Data

Transformations for Sparse Matrix Code. SIGPLAN Not. 50, 6 (June
2015), 521–532. doi:10.1145/2813885.2738003

[68] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song,

Jinjing Zhou, Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He,

George Karypis, Jinyang Li, and Zheng Zhang. 2019. Deep Graph Li-

brary: A Graph-Centric, Highly-Performant Package for Graph Neural

Networks. arXiv preprint arXiv:1909.01315 (2019).
[69] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi

Bagheri, and Ronald M Summers. 2017. ChestX-ray8: Hospital-scale

chest X-ray database and benchmarks on weakly-supervised classifi-

cation and localization of common thorax diseases. In Proceedings of
the IEEE conference on computer vision and pattern recognition (CVPR).
2097–2106.

[70] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016.

Learning structured sparsity in deep neural networks. Advances in
neural information processing systems 29 (2016).

[71] JianWeng, Sihao Liu, Dylan Kupsh, and TonyNowatzki. 2022. Unifying

spatial accelerator compilation with idiomatic and modular transfor-

mations. IEEE Micro 42, 5 (2022), 59–69.
[72] Yidi Wu, Kaihao Ma, Zhenkun Cai, Tatiana Jin, Boyang Li, Chenguang

Zheng, James Cheng, and Fan Yu. 2021. Seastar: vertex-centric pro-

gramming for graph neural networks. In Proceedings of the sixteenth
european conference on computer systems. 359–375.

[73] Yannan Nellie Wu, Po-An Tsai, Angshuman Parashar, Vivienne Sze,

and Joel S. Emer. 2022. Sparseloop: An Analytical Approach To Sparse

Tensor Accelerator Modeling. doi:10.48550/ARXIV.2205.05826
[74] Rohan Yadav, Alex Aiken, and Fredrik Kjolstad. 2022. SpDISTAL:

Compiling Distributed Sparse Tensor Computations. arXiv preprint
arXiv:2207.13901 (2022).

[75] Bobby Yan, Alexander J Root, Trevor Gale, David Broman, and Fredrik

Kjolstad. 2024. Scorch: A Library for Sparse Deep Learning. arXiv
preprint arXiv:2405.16883 (2024).

[76] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. 2016.

Revisiting Semi-Supervised Learning with Graph Embeddings.

arXiv:1603.08861 [cs.LG] https://arxiv.org/abs/1603.08861
[77] Zihao Ye, Ruihang Lai, Junru Shao, Tianqi Chen, and Luis Ceze. 2022.

SparseTIR: Composable Abstractions for Sparse Compilation in Deep

Learning. doi:10.48550/ARXIV.2207.04606
[78] Wayne W Zachary. 1977. An information flow model for conflict and

fission in small groups. Journal of anthropological research 33, 4 (1977),

452–473.

[79] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua

Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula,

Qifan Wang, Li Yang, et al. 2020. Big bird: Transformers for longer

sequences. Advances in neural information processing systems 33 (2020),
17283–17297.

[80] Genghan Zhang, Olivia Hsu, and Fredrik Kjolstad. 2024. Compilation

of Modular and General Sparse Workspaces. Proceedings of the ACM
on Programming Languages 8, PLDI (2024), 1213–1238.

[81] Nathan Zhang, Rubens Lacouture, Gina Sohn, Paul Mure, Qizheng

Zhang, Fredrik Kjolstad, and Kunle Olukotun. 2024. The Dataflow

AbstractMachine Simulator Framework. In 2024 ACM/IEEE 51st Annual
International Symposium on Computer Architecture (ISCA). 532–547.
doi:10.1109/ISCA59077.2024.00046

[82] Tong Zhou, Ruiqin Tian, Rizwan A Ashraf, Roberto Gioiosa, Gokcen

Kestor, and Vivek Sarkar. 2022. ReACT: Redundancy-aware code

generation for tensor expressions. In Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques. 1–13.

https://doi.org/10.1145/2485922.2485935
https://doi.org/10.1145/3140659.3080256
https://doi.org/10.1145/3689752
https://doi.org/10.1145/3466752.3480047
https://doi.org/10.1145/3466752.3480047
https://doi.org/10.1145/3428226
https://doi.org/10.1145/3649820
https://doi.org/10.1145/3649820
https://doi.org/10.1145/2813885.2738003
https://doi.org/10.48550/ARXIV.2205.05826
https://arxiv.org/abs/1603.08861
https://arxiv.org/abs/1603.08861
https://doi.org/10.48550/ARXIV.2207.04606
https://doi.org/10.1109/ISCA59077.2024.00046

ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA. Rubens Lacouture et al.

A Artifact Appendix
A.1 Artifact Abstract
This appendix describes how to set up and run the Fuse-

Flow system, which includes programs compiled using the

FuseFlow compiler and run on the Comal simulator. Our

artifact provides a Docker image containing all required de-

pendencies (Python, Rust, MLIR via LLVM, protobuf, etc.)

and scripts to reproduce the experimental results reported

in this paper. The artifact can be executed with any x86-64

machine with Docker, Python3, Git, and Bash support, at

least 64 GB of RAM, and more than 200 GB of disk space.

A.2 Artifact Check-List (Meta-Information)

• Data set: We use select datasets from the following

sources[7, 16, 34, 63, 69, 76].

• Run-time environment: Docker, Git, Python 3, and

bash need to be installed on the local machine. We

recommend proficiency in bash and git.

• Hardware: Any conventional x86-64 CPU with at

least 64 GB of RAM.

• Metrics: Number of FLOPs, number of bytes trans-

ferred or accessed, search space size, latency in cycles

and normalized.

• Output: Terminal outputs, files, graphs (PDF figures).

• How much disk space required (approximately)?:
Approximately 200 GB of disk space would be suffi-

cient.

• How much time is needed to prepare workflow
(approximately)?:About 5 human-minutes and 10-20

compute-minutes.

• How much time is needed to complete experi-
ments (approximately)?: The total time to complete

all experiments is approximately 5 human-minutes

and 96 compute-hours when measured on a Google

Cloud C2-standard-60 instance (60 logical threads run-

ning on a Intel Xeon Gold 6253CL Processor with 240

GB memory).

• Publicly available?: Yes, on Github at the fuseflow-

artifact and on a publicly available archive Figshare

DOI.

• Code licenses (if publicly available)?: MIT License

• Workflow framework used?: Docker
• Archived (provide DOI)?: Yes, the reserved DOI is

this Figshare DOI.

A.3 Description
A.3.1 How to Access. The code for this submission can

be downloaded from the fuseflow-artifact repository. The

repository includes a Dockerfile that can be used to build

the Docker image for the full evaluation of the artifact. The

artifact is also available at this reserved Figshare DOI.

A.3.2 Hardware Dependencies. We recommend using

an x86-64 machine with at least 64 GB of RAM. The more

RAM available, the less compute-hours each experiment will

take. The Figure 12 benchmark script takes in as a parameter

the number of workers that dictate how many simultane-

ous simulations to schedule. By default we use 2, but it can

be scaled up with the available memory. Running with 3

workers, it peaked at 140 GB of memory. Our compute-time

estimates are calculated on a machine with 240 GB of RAM.

A.3.3 Software Dependencies. The artifact requires a

machine with Docker, Git, Python 3, and bash installed. We

evaluated the artifact with the following configuration De-

bian 6.1, Docker 20.10.24+dfsg1, Python 3.11.2, and GNU

bash 5.2.15(1)-release on an Intel-based machine.

A.3.4 Data sets. We use select datasets from the following

sources[7, 16, 34, 63, 69, 76]. The full set of datasets corre-

sponding to each model can be found at Table 2.

A.4 Installation
To install, first clone the fuseflow-artifact repository to the lo-

cal machine. Then build the Docker image with the following

commands (the build can take up to 20 minutes):

Clone via HTTPS

$ git clone --recursive https :// github.com/

lrubens/fuseflow -artifact.git

$ git submodule update --init --recursive

$ docker build -t fuseflow -artifact .

The Docker container can be started with the following

command within a bash terminal. This command will also

print the container ID CONTAINER_ID.

$ docker run -d -it --rm fuseflow-artifact bash

The container can be attached to by running:

$ docker attach <CONTAINER_ID>

Once attached to the docker container, it is important not

to not type exit in the docker terminal as this will kill the

container. The proper way to exit the docker is the sequence

CTRL-p, CTRL-q.

A.5 Experimental Workflow
The experimental workflow for this artifact includes run-

ning scripts in the Docker container to run experiments and

generate figures in the paper. The detailed instructions can

be found in the README.md within the repository.

A.6 Evaluation and Expected Results
Within the Docker container, run the following to generate

all results:

In Docker Container

$ bash scripts/run_all_benchmarks.sh

ctrl+p ctrl+q

https://github.com/lrubens/fuseflow-artifact
https://github.com/lrubens/fuseflow-artifact
https://doi.org/10.6084/m9.figshare.30890834
https://doi.org/10.6084/m9.figshare.30890834
https://doi.org/10.6084/m9.figshare.30890834
https://github.com/lrubens/fuseflow-artifact
https://doi.org/10.6084/m9.figshare.30890834
https://github.com/lrubens/fuseflow-artifact

FuseFlow: A Fusion-Centric Compilation Framework for Sparse Deep Learning on Dataflow ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA.

Once the experiments finish, detach the container by press-

ing ctrl+p and ctrl+q. To copy the experiment results and

figures from the container, move outside of the fuseflow-

artifact repository on the local machine and run the following

commands: The CONTAINER_ID is the same ID used to attach

to the container. You may also retrieve the CONTAINER_ID
again by running docker ps in your terminal. The results

and figures will be copied to fuseflow-artifact/results.

In the local machine

Within fuseflow -artifact/

$ bash scripts/extract_results.sh

The expected results in the fuseflow-artifact/results
directory are:

fuseflow-artifact/results
|- figure12.pdf
|- figure13.pdf
|- figure14.pdf
|- figure16a.pdf
|- figure16b.pdf
|- figure17.pdf
|_ figure18.pdf

• Figure 12: The reproduced figure and experimental re-

sults can be found in the fuseflow-artifact/results
folder under figure12.pdf and
figure12_results.json. Verify that the resultsmatch

the figure.

• Figure 13: We do not provide artifact evaluation code

to reproduce the results for the hardware validation

as it requires access to proprietary Xilinx FPGA tools

and takes too long to synthesize the Verilog hardware.

• Figure 14: The reproduced figure and experimental re-

sults can be found in the fuseflow-artifact/results
folder under figure14.pdf and
figure14_results.json. Verify that the resultsmatch

the figure.

• Figure 16a: The reproduced figure and experimental re-

sults can be found in the fuseflow-artifact/results
folder under figure16a.pdf and
figure16a_results.json. Verify that the resultsmatch

the figure.

• Figure 16b: The reproduced figure and experimental re-

sults can be found in the fuseflow-artifact/results
folder under figure16b.pdf and
figure16b_results.json. Verify that the resultsmatch

the figure.

• Figure 17: The reproduced figure and experimental re-

sults can be found in the fuseflow-artifact/results
folder under figure17.pdf and
figure17_results.json. Verify that the resultsmatch

the figure.

• Figure 18: The reproduced figure and experimental re-

sults can be found in the fuseflow-artifact/results

folder under figure18.pdf and

figure18_results.json. Verify that the resultsmatch

the figure.

B Appendix
B.1 Intra-expression Iteration Fusion Details
Although we provide a diagram of intra-expression iteration

fusion in Figure 3 for dataflow, we also want to tie it to imper-

ative loops for better understanding. We provide an example

IIF fusion transformation for dense loops in Figure 19. The

transformation for sparse loops is similar but includes coit-

eration of sparse tensors and iteration of compressed tensor

reference arrays.

1 for(int i = 0; i < I; i++)

2 a[i] = ...

3 for(int i = 0; i < I; i++)

4 b[i] = ...

(a) Unfused intra-expression iteration dense loops.

1 for(int i = 0; i < I; i++)

2 a[i] = ...

3 b[i] = ...

(b) Fused intra-expression iteration dense loops.

Figure 19. Code demonstrating IIF on dense iteration spaces

for dense compilers. Figure 19a unfuses the dense iteration

space for vectors a and b, while Figure 19b fuses the dense

iteration space for a and b. This transformation is often equiv-

alent to loop fusion on dense loops.

B.2 Full Fusion Table for GraphSAGE Example
Figure 20 shows the full fusion table for the GraphSAGE

fused kernel.

B.3 Lowering Algorithm Implications
Our proposed lowering method produces dataflow graphs

with computations, along with their reductions, placed in

their natural positions rather than deferring them to the end.

In particular, The FuseFlow compiler generates factored it-

eration because it does not distribute multiplications across

sums and does not construct a fully fused global iteration

space. For our GraphSAGE example in Figure 10, we use back-

ground color shading to help visualize this placement and dis-

tinguish interleaved regions: blue shading highlights input

iteration regions, while yellow shading highlights compu-

tation regions. Concretely, higher-order reducer primitives

spatially appear earlier in the graph and generate coordinate

streams that flow to stream joiners later in the graph. An

abstracted version of this interleaving is shown in Figure 11

(right) with behavior equivalent to the factored fusion iter-

ation space from Figure 5b. On the other hand, Figure 11

(left) shows the generated SAM graphs from prior work [32]

https://github.com/lrubens/fuseflow-artifact
https://github.com/lrubens/fuseflow-artifact

ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA. Rubens Lacouture et al.

𝐴𝑖𝑙 𝑋𝑙𝑚 𝑇 0

𝑖𝑚 Ω2

𝑚𝑗 𝑇𝑛𝑏𝑜𝑟
𝑖 𝑗

𝑖 LS(root) Rep(root, ⟨𝐴𝑖⟩) ⟨𝐴𝑖⟩ Rep(root, ⟨𝑇 0

𝑖 ⟩) 𝑇 0

𝑖

𝑙
LS(⟨𝐴𝑖⟩) LS(⟨𝑋𝑖⟩) ⟨𝑇 0

𝑖 ⟩ ⟨Ω (2)
𝑖

⟩ ⟨𝑇𝑛𝑏𝑜𝑟
𝑖 ⟩

Intersect𝑙

𝑚
Rep(⟨𝐴𝑙 ⟩,⟨𝑋𝑚⟩) LS(⟨𝑋𝑙 ⟩) Red1𝑙 LS(⟨Ω (2)

𝑙
⟩) ⟨𝑇𝑛𝑏𝑜𝑟

𝑙
⟩

Intersect𝑚

𝑗 ⟨𝐴𝑚⟩ ⟨𝑋𝑚⟩ ⟨𝑇 0

𝑚⟩[crd0] LS(⟨Ω (2)𝑚 ⟩) Red1𝑚[crd0]

val Val(⟨𝐴 𝑗 ⟩) Val(⟨𝑋 𝑗 ⟩)
Rep(⟨𝑇 0

𝑚⟩[val],
Val(⟨Ω (2)

𝑗
⟩) Red1𝑚[val]

⟨Ω (2)
𝑗

⟩)

Figure 20. Fusion table for our 𝑇𝑛𝑏𝑜𝑟
example from GraphSAGE where Red1𝑙 [crd0, val] =

∑
𝑙 ⟨𝐴𝑣𝑎𝑙 ⟩ × ⟨𝑋𝑣𝑎𝑙 ⟩ and Red1𝑚[crd0,

val] =

∑
𝑚 ⟨𝑇 0

𝑣𝑎𝑙
⟩ × ⟨Ω (2)

𝑣𝑎𝑙
⟩.

Ve
ct

or
 (1

) R
ed

uc
er

 l

M
ult

ip
lie

r

Array
Ω vals

Array
A vals

Array
X vals

root

root

In
te

rs
ec

te
ri crd

m crd

j crd final
i crd

root
j crd

stream
l crd

j crd
m crd

l crd

j crd final

Level Scanner
Ai

compressed

Repeater
Xi

Repeater
Ωi

Level Scanner
Al

compressed

Level Scanner
Xl

dense

Repeater
Ωl

Level Scanner
Ωm

compressed

Level Scanner
Xm

dense

In
te

rs
ec

te
r

Repeater
Am

Level Scanner
Ωj

compressed

Repeater
Xj

Repeater
Aj

M
ult

ip
lie

r

Ve
ct

or
 (1

) R
ed

uc
er

 m

Level Writer
T vals

compressed

Level Writer
Tj

compressed

Level Writer
Ti

compressed

Coordinate
Dropper

Tensor Construction

Computation: T0 fused with T1Input Iteration: T0 fused with T1

(a) SAM graph with global iteration space.

Level Writer
Ti

compressed

root Level Scanner
Al

compressed

Level Scanner
Ai

compressed

root
Level Scanner

Xl
dense

Repeater
Xi

In
te

rs
ec

te
r Repeater

Am

Level Scanner
Xm

dense

Array
A vals

Array
X vals

Level Writer
T vals

compressed

i crd

m crd Level Writer
Tj

compressed

Ve
ct

or
 (1

) R
ed

uc
er

 m

i crd Coordinate
Dropper

Repeater
Ωi

Level
Scanner Ωm
compressed

In
te

rs
ec

te
r

Level Scanner
Ωj

compressed
Array
Ω vals

M
ult

ip
lie

r

root

Repeater
Xj

j crd
l crd

j crd
m crd

M
ult

ip
lie

r

Ve
ct

or
 (1

) R
ed

uc
er

 l

m crd
l crd

Input Iteration: T0 Computation: T0

Input Iteration: T1 Computation: T1

Tensor Construction

(b) SAMML graph with factored iteration space.

Figure 21. SAM graph with global iteration space vs. SAMML graph with factored iteration space.

with its behavior equivalent to the global iteration space in

Figure 5a. In this case, all computation is combined at the

end, rather than interleaved. Figure 11 demonstrates how our

sparse abstract machine dataflow graphs changed given the

new lowering algorithm presented in this section. Concretely,

for our GraphSAGE example, the SAM graph with global

iteration space is shown in Figure 21a, constrasting with the

SAMML graph with factored iteration space as shown in

Figure 21b.

B.4 Full Cross-Expression Fusion Algorithm
We present the cross-expression fusion algorithm as de-

scribed in Section 5 below in Algorithm 1.

B.5 Full Fusion Table Lowering Algorithm
We present the full fusion table lowering algorithm as de-

scribed in Section 6.1 below in Algorithm 2.

C Fusion Configuration Breakdown
We present the breakdown for each of the fusion configu-

rations tested in Section 8 in Figure 22. Fused subset boxes

FuseFlow: A Fusion-Centric Compilation Framework for Sparse Deep Learning on Dataflow ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA.

Algorithm 1 Cross-Expression Fusion with Ordering-Constraints

Require: List of kernel expressions E = {𝑒1, . . . , 𝑒𝑚} in program order

Ensure: Fused Einsum expressions F and a global partial-order graph 𝑃 = (𝑉 , 𝐸)
1: procedure FuseExpressions(E) ⊲ Init partial order graph

2: 𝑃 ← InitPOG ⊲ nodes = index variables

3: F ← [] ⊲ accumulates fused kernels

4: for all expression 𝑒 ∈ E do
5: for all tensor 𝑇 in 𝑒 do
6: for all reduction indices 𝑟 of 𝑇 do
7: 𝑢 ← getFreshIndexVar()

8: 𝑒 ← 𝑒 [𝑟 ← 𝑢] ⊲ substitution

9: 𝐸 ← 𝐸 ∪ModeOrderEdges(𝑇) ⊲ add (·→·) edges for 𝑇 ’s format

10: InlineUses(𝑒, F) ⊲ replace all uses of 𝑒’s outputs

11: 𝑜𝑟𝑑𝑒𝑟 ← DataflowOrder(𝑒) ⊲ e.g. 𝑗→𝑘→𝑖

12: for all outer→ inner in 𝑜𝑟𝑑𝑒𝑟 do
13: 𝐸 ← 𝐸 ∪ {(𝑜𝑢𝑡𝑒𝑟, 𝑖𝑛𝑛𝑒𝑟)}
14: for all tensor uses𝑈 in 𝑒 grouped by original tensor name do
15: if CompatibleViews(𝑈) then
16: MergeViews(𝑈)

17: else
18: TagDuplicate(𝑈)

19: if CycleDetected(𝑃) then
20: ResolveCycles((P)) ⊲ insert permutations on offending views

21: 𝜋 ← TopologicalSort(𝑃) ⊲ global concordant order

22: F ← EmitEinsum(𝜋) ⊲ respecting 𝑃 and tensor views

23: return F , 𝑃

align with their corresponding unfused operations to show

which components are combined.

ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA. Rubens Lacouture et al.

Algorithm 2 Lowering a Tensor Computation Graph with Fusion Tables

Require: Tensor-IR graph 𝐺 = (𝑉 , 𝐸)
Ensure: Staged, hardware-ready stream graph 𝐺 ′

1: procedure LowerGraph(𝐺)

2: 𝐺 ′ ← InitGraph

3: for all tensor-views 𝑇 in 𝑉 (top-down) do ⊲ 1) Insert level scanners & value nodes

4: if 𝑇 is InputTensor then
5: InsertLSAndVal(𝑇,𝐺 ′)

⊲ 2) Insert repeat and compute nodes

6: if 𝑇 is IntermediateTensor then
7: 𝑚𝑖𝑠𝑠𝑖𝑛𝑔← indices absent from 𝑇

8: for all 𝑖 ∈ 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 do
9: InsertRep(𝑇, 𝑖,𝐺 ′)

10: InsertComputePipeline(𝑇,𝐺 ′)

⊲ 3) Handle higher-order reductions (modifies table by moving cells)

11: if HasHigherOrderReduction(𝑇) then
12: LowerReduction(𝑇,𝐺 ′)

⊲ 4) Stream-level merging across views (modifies table by moving cells)

13: for all index-vars 𝑖 shared by > 1 view do
14: MergeStreams(𝑖,𝐺 ′) ⊲ intersect / union

⊲ 5) Emit lambda table of cell evaluators

15: Λ← EmitFusionTable(𝐺 ′) ⊲ Λ : cell ↦→ 𝜆

⊲ 6) Trigger graph construction via output view

16: 𝑇out ← OutputTensor(𝐺)
17: Evaluate(Λ[𝑇out])
18: return 𝐺 ′

FuseFlow: A Fusion-Centric Compilation Framework for Sparse Deep Learning on Dataflow ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA.

SpMM1

Add1

ReLU

SpMM2

Add2

Soft

Unfused Partially Fused Fully Fused

Subset 1

Subset 2

Subset 1

(a) SAE

Adj1

Lin mm1

Lin bias1

ReLU

Adj2

Lin mm2

Lin bias2

Soft

Unfused Partially Fused Fully Fused

Subset 1

Subset 2

Subset 1

(b) GCN

Adj1

Lin mm1a

Lin bias1a

Lin mm1b

Lin bias1b

Add

ReLU

Adj2

Lin mm2a

Lin bias2a

Lin mm2b

Lin bias2b

Add

Soft

Unfused Partially Fused Fully Fused

Subset 1

Subset 2

Subset 1

(c) GraphSAGE

Unfused

LN1

QKV

mm

QKV

bias
Resh

QK

mul

Attn

Mask
Scale Soft QKtV Resh

Out

mm

Out

bias

Res1 LN2

FFN1

mm

FFN1

bias

GeLU

FFN2

mm

FFN2

bias

Res2 LN1

QKV

mm

QKV

bias

...

Decoder 𝑛 Decoder 𝑛+1

Partially Fused

Subset 1 Resh Subset 2 Resh Subset 3 Subset 1
...

Fully Fused

Subset 1 Resh Subset 2 Resh Subset 3 + next Subset 1
...

(d) GPT-3

Figure 22. Fusion configurations for evaluated models. (a)–(c) show SAE, GCN, and GraphSAGE with three fusion granularities:

unfused (separate kernels), partially fused (subsets per layer), and fully fused (single kernel). (d) GPT-3: reshape operations

(dashed) act as fusion boundaries. Partial fusion groups operations into 3 subsets within each decoder. Fully fused merges

Subset 3 of decoder 𝑛 with Subset 1 of decoder 𝑛+1, fusing across decoder boundaries.

	Abstract
	1 Introduction
	2 Sparse Abstract Machine Background
	3 Forms of Fusion
	4 Overview of FuseFlow
	4.1 Supported Sparsity Types
	4.2 Compilation Flow

	5 Cross-Expression Fusion Algorithm
	6 Lowering with Fusion tables
	6.1 Fusion Table IR
	6.2 Code Generation

	7 FuseFlow Implementation
	8 Evaluation
	8.1 Methodology
	8.2 Hardware Validation
	8.3 Fusion
	8.4 Comparison with Prior Dataflow Compilers
	8.5 Sparsity Ablation Study
	8.6 Parallelization
	8.7 Block Sparse Computation
	8.8 Dataflow Ordering

	9 Related Work
	9.1 Compiling Sparse Tensor Algebra to Dataflow
	9.2 Fusion in Sparse Tensor Frameworks
	9.3 Relation to Classic Loop Optimizations
	9.4 Sparse ML Compilation and Frameworks

	10 Conclusion
	References
	A Artifact Appendix
	A.1 Artifact Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experimental Workflow
	A.6 Evaluation and Expected Results

	B Appendix
	B.1 Intra-expression Iteration Fusion Details
	B.2 Full Fusion Table for GraphSAGE Example
	B.3 Lowering Algorithm Implications
	B.4 Full Cross-Expression Fusion Algorithm
	B.5 Full Fusion Table Lowering Algorithm

	C Fusion Configuration Breakdown

